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ABSTRACT

This paper addresses a speech recognition problem in non-stationary
noise environments: the estimation of noise sequences. To solve this
problem, we present a particle filter-based sequential noise estima-
tion method for the front-end processing of speech recognition. In
the proposed method, the particle filter is defined by a dynamical
system based on Polyak averaging and feedback. We also intro-
duce a switching dynamical system into the particle filter to cope
with the state transition characteristics of non-stationary noise. In
the evaluation results, we observed that the proposed method im-
proves speech recognition accuracy in the results of non-stationary
noise environments by a noise compensation method with stationary
noise assumptions.

1. INTRODUCTION

Noise robustness is one of the most important problems for the ap-
plication of speech recognition techniques in real environments. For
this problem a lot of research in speech recognition in noise has been
reported where adverse noise is restricted to stationary noise [1, 2, 3].
However, most of the noise observed in real environments has non-
stationary characteristics. To improve speech recognition accuracy
in non-stationary noise environments, it is necessary to estimate the
noise sequence as accurately as possible. However, the estimation
of non-stationary noise sequences is difficult because, in most cases,
the observable signal on which the speech recognition is performed
is the only noise added speech signal. So both clean speech and
noise have non-stationary characteristics.

To solve such problems, several estimation methods of non-sta-
tionary noise based on a sequential EM algorithm are reported [4,
5, 6] that can effectively estimate noise sequences. However, their
computation costs are expensive because frame by frame iterative
estimation is required for the convergence of noise parameters. Re-
cently, a particle filter-based sequential estimation [7, 8] has attracted
attention and been applied to various research fields. The particle fil-
ter is a Bayesian estimation method, whose main estimation frame-
work is based on a sequential Monte Carlo method. Therefore, the
computation costs of the particle filter are cheaper than a sequential
EM algorithm because iterative estimation is not always required.

In this paper, we present a sequential non-stationary noise esti-
mation method based on particle filtering. In applications of parti-
cle filtering, first, a definition of the signal model called a dynam-
ical system (state-space model) is required. Typically, a dynamical
system can be defined by two equations: a state transition equation
that represents the dynamics of the target signal, and an observation
equation that represents the output system of the observed signal.
In our previous work [9], we proposed a sequential non-stationary

noise estimation method with a Polyak averaging-based state tran-
sition equation [6, 10]. The Polyak averaging-based state transition
equation has three parameters and these are set as time constant pa-
rameters in our previous work. However, these parameters should be
set as time varying parameters because the state transition character-
istics of non-stationary noise may change frame by frame. In this
problem, we introduce a switching dynamical system [11], which
changes the parameters of Polyak averaging, into particle filter-based
sequential estimation and show its effectiveness in noise estimation
and the improvement of speech recognition accuracy.

Our proposed method was evaluated on a connected Japanese
digit recognition task [12] conducted on speech recognition in highly
non-stationary noise environments. In the evaluation results, we ob-
served that the proposed method improves speech recognition accu-
racy in the results of non-stationary noise environments by a noise
compensation method with stationary noise assumptions.

2. PARTICLE FILTER-BASED NOISE ESTIMATION

Figure 1 is a block diagram of the proposed front-end environmen-
tal compensation method that consists of particle filter-based param-
eter estimation and a minimum mean square error (MMSE)-based
clean speech estimation method [3]. In the particle filter, the pa-
rameters are estimated through sequential importance sampling that
consists of extended Kalman filter-based parameter updating, a sam-
ple weight computation, residual resampling [7], and a Markov chain
Monte Carlo with Metropolis-Hastings sampling [13]. The details of
the proposed method are described below.

Minimum mean square error

estimation of clean speech

Extended Kalman filter-based

parameter updating

Sample weight computation

Residual resampling

Metropolis-Hastings sampling

Particle filter-based parameter estimation

Speech recognition

Observed signal

Clean speech GMMEstimated parameters

Estimated clean speech signal

t = t + 1

Clean speech GMM

Fig. 1. A block diagram of the proposed front-end environmental
compensation method
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2.1. Particle filtering algorithm

Sequential importance sampling step

Let Xt and Nt denote the vectors at t-th short time frame that
have logarithmic output energy of Mel-filter bank of observed noisy
speech and noise, respectively. When Xt is observed, the a poste-
riori probability density function (PDF) for the sequence of Nt can
be represented by Eq. (1) under the assumption that the sequence of
the a posteriori PDF of Nt follows a first order Markov chain.

p(N0:t|X0:t) = p(N0|X0)

tY
t′=1

p(Nt′ |Nt′−1)p(Xt′ |Nt′) , (1)

where N0:t = {N0, . . . ,Nt} and X0:t = {X0, . . . ,Xt}. There-
fore, N0:t is estimated as the signal that recursively maximizes the
above PDF. In a particle filtering, a posteriori PDF p(N0:t|X0:t) is
approximated by Monte Carlo sampling as follows:

p(N0:t|X0:t) � 1
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where j, J , w
(j)
t , and δ(·) denote the sample index, the number of

samples, the weight of sample j at time t (
PJ
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t = 1), and a

Dirac delta function, respectively.
Usually, samples N
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t were drawn by a sequential importance

sampling (SIS) [7] and sample weight w
(j)
t is defined as
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In Eq. (2), p(N
(j)
0:t |X0:t), a posteriori PDF for each sample,

is updated from the previous PDF p(N
(j)
0:t−1|X0:t−1) by using an

extended Kalman filter.

Residual resampling (selection) step

In practice, after the SIS step, the weights of all but several sam-
ples may become insignificant. Given the fixed number of samples,
this will degenerate the estimation. A selection step by residual re-
sampling [7] is adopted after the sampling step. The method avoids
degeneracy by discarding samples with insignificant weights, and
to maintain a constant number of samples, those with significant
weights are duplicated. Accordingly, weights after the selection step
are also proportionally redistributed.

Markov chain Monte Carlo step

After the resampling step at frame t, these J samples are distributed
approximately according to Eq. (2). However, the discrete nature
of the approximation can skew the importance weight distribution,
where in extreme cases all samples have the same value. A Metropolis-
Hastings (MH) sampling [13] step is introduced in each sample that
involves sampling a candidate given the current state according to a
proposed importance distribution. To simplify the calculation, we
assume that the importance distribution is symmetric.

2.2. Dynamical system based on Polyak averaging and feedback
In the SIS step, to update the a posteriori PDF for each sample using
an extended Kalman filter, a definition of the signal model called a
dynamical system (state-space model) is required. Typically, a dy-
namical system can be defined by two equations: a state transition

equation that represents the dynamics of the target signal, and an ob-
servation equation that represents the output system of the observed
signal.

First, assume that clean speech St can be modeled by a Gaussian
mixture model (GMM). At time t, parameter S

(j)
kt,t is sampled from

Gaussian distribution kt contained in a clean speech GMM. In this
case, the observation process of Xt can be modeled by the following
equation by using noise sample N

(j)
t and error signal V(j)

t ,

Xt = S
(j)
kt,t + log

“
I + exp

“
N

(j)
t − S

(j)
kt,t

””
+ V

(j)
t (4)

V
(j)
t ∼ N `

0,ΣS(j),kt

´
, (5)

where ΣS(j),kt
denotes the diagonal covariance matrix of Gaussian

distribution contained in clean speech GMM.
On the other hand, the state transition process of N

(j)
t is typi-

cally modeled by a random walk process as follows:

N
(j)
t+1 = N

(j)
t + W

(j)
t , (6)

where W
(j)
t denotes the driving noise that follows zero mean Gaus-

sian noise with diagonal covariance matrix of Σ
(j)
W

The random walk process is widely used for the state transition
process of the dynamical system. However, it cannot represent the
accurate state transition of noise because it provides the state transi-
tion of the target signal using random noise. Generally, the definition
of the state transition equation is the most important factor for the
state-space model-based accurate estimation of a noise sequence. To
solve this problem, we introduce the following state transition equa-
tion:

N
(j)
t+1 = (1 − α)N

(j)
t + αN̂t + β

“
µ

(j)
Nt

− N
(j)
t

”
+ W

(j)
t ,

(7)

where N̂t, α, and β denote the weighted average of noise sample
N

(j)
t calculated by Eq. (8), a forgetting factor, and a scaling factor

of feedback, respectively.

N̂t =

JX
j=1

w
(j)
t N

(j)
t . (8)

The first and second terms of Eq. (7) move noise sample N
(j)
t

close to the weighted average using the forgetting factor. Thus, this
reduces the scatter of samples and can prevent the appearance of
outlier samples.

In the third term of Eq. (7), µ(j)
Nt

, which is calculated by Eq. (9),
is the average of the preceding T samples (Polyak average [10]).
The third term of Eq. (7) shows the feedback of the Polyak average
and represents the compensation range for parameter prediction to
the next time by considering the difference between the average of
the preceding samples and the current sample [6].

µ
(j)
Nt

=
1

T

tX
s=t−T+1

N(j)
s (9)

Figure 2 illustrates examples of Polyak averaging. When N
(j)
t

varies slowly as shown in case (a) of Figure 2, the difference between
Polyak average µ

(j)
Nt

and N
(j)
t usually has a small value. Thus, the

compensation range for parameter prediction from N
(j)
t to N

(j)
t+1 is

regarded as small. On the other hand, when N
(j)
t varies rapidly, as
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shown in case (b), the difference between µ
(j)
Nt

and N
(j)
t usually has

a large value. Thus, the compensation range for parameter prediction
from N

(j)
t to N

(j)
t+1 is regarded as large.

From these facts, it can be assumed that Polyak averaging con-
trols the compensation range for parameter prediction to the next
time. A Polyak averaging-based state transition equation can es-
timate the noise sequence more accurately than the random walk
process-based state transition equation because it predicts the next
frame parameter depending on varying ranges of preceding frames.

(b) Rapidly varying case

µ Nt
(j) Nt+1

(j)

Nt
(j)

(a) Slowly varying case
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Fig. 2. Examples of Polyak averaging

2.3. Switching dynamical system
The Polyak averaging described in Section 2.2 predicts the N

(j)
t of

a future frame depending on the time varying characteristics of the
preceding frames. In previous work [9], the parameters of Polyak
averaging are fixed as time constants. However, time varying charac-
teristics of non-stationary noise may change frame by frame, there-
fore, the parameters of Polyak averaging should be set as time vari-
able parameters. For the implementation of this scheme, we intro-
duce a switching dynamical system [11] into the particle filtering.

The switching dynamical system has several dynamical systems
with different parameter settings, and switches suitable parameters
for the next frame according to the current state m

(j)
t . The target

state is randomly selected according to the state transition probabil-
ity from current state m

(j)
t to target state n

(j)
t+1. In this study, we

defined the state transition probability a
(j)
mn,t as follows.

Figure 3 shows an example of the state transition of the forget-
ting factor α. In the figure, α has four states (1 to 4), and the value
of α (0.05 to 0.20) is output from the corresponding state. When
the current state m

(j)
t is assigned, the distance between current state

m
(j)
t to target state n

(j)
t+1 is calculated as the absolute difference of

the state index, i.e., d
(j)
mn,t =

˛̨
˛n(j)

t+1 − m
(j)
t

˛̨
˛.
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=2d mn,t
(j)
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m (j)
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2 3 41

Fig. 3. An example of the state transition of parameter α

The state transition probability is calculated by Eq. (10) using
d
(j)
mn,t and sensitivity parameter γ (1 ≥ γ > 0). After the computa-

tion of a
(j)
mn,t, it is normalized as

P
n a

(j)
mn,t = 1.

a
(j)
mn,t = γd

(j)
mn,t (10)

Eq. (10) means that the state transition probability becomes
small when the difference between the current state index and the
target state index becomes large. When the target state is the same
as the current state, namely the self-loop case, the state transition

probability is maximized. The parameter γ controls the sensitivity
of state transition probabilities. When γ is set as a small value, the
sensitivity of the state transition probabilities becomes sharp. In the
case of γ = 1, equal probabilities are assigned to all of the states.

The calculation of a
(j)
mn,t and state selection is independently

applied to each parameter of Polyak averaging, i.e., α, β, and T .

3. EXPERIMENTS
3.1. Experimental setup
Speaker independent Japanese digit recognition was carried out us-
ing HTK ver. 3.2 [14]. The training and testing data were 8,440
connected digit utterances spoken by 110 speakers (55 males and 55
females) and 1,001 connected digit utterances spoken by 104 speak-
ers (52 males and 52 females). These materials were taken from
AURORA-2J [12]. Factory and road cutting noises recorded in real
environments [15] were artificially added to clean testing data with
SNRs from 0 to 20 dB.

The feature parameters used in this evaluation were composed of
39 MFCCs with 13 MFCCs (with zero-th MFCC) and their first and
second order derivatives. A zero-th MFCC was used as the energy
coefficient instead of a standard Log-energy. At the feature extrac-
tion stage, CMS was applied to each sentence.

AURORA-2J standard whole word HMMs (16 states, 20 mix-
ture distributions per state) were used for speech recognition and
trained using clean training data. We also trained the clean speech
GMM with 512 mixture distributions for MMSE-based noise sup-
pression and particle filter-based sequential noise estimation by us-
ing the clean training data of AURORA-2J. The feature parameters
were the 23rd order log output energy of a Mel-filter bank.

In particle filter-based noise estimation, the number of samples
was fixed at 50, and the covariance matrix of driving noise Wt was
set to ΣW = diag(0.0001). The parameters of Polyak averaging
and feedback have four states, i.e., α = {0.05, 0.10, 0.15, 0.20},
β = {0.5, 1.0, 1.5, 2.0}, and T = {5, 10, 15, 20}, respectively.
3.2. Experimental results
Tables 1 and 2 indicate the speech recognition results for word accu-
racy. In the tables, “HTK,” “ETSI,” “MMSE,” ‘SEM,” “PF 1,” “PF
2,” and “PF 3” indicate the baseline results without noise compen-
sation, results by ETSI Advanced front-end, results by MMSE esti-
mation with stationary noise compensation, results by the sequential
EM-algorithm, results by particle filtering with the random walk pro-
cess, results by particle filtering with Polyak averaging and feedback
(constant parameter), and results by particle filtering with switching
dynamical system, respectively. In “PF 2,” the parameters were set
as: factory noise case α = 0.20, β = 0.5, and T = 10, and road
cutting noise case α = 0.20, β = 0.5, and T = 20. In “PF 3,” the

Table 1. Word accuracy of factory noise environments (%)
SNR HTK ETSI MMSE SEM PF 1 PF 2 PF 3
20 dB 93.61 92.88 96.41 96.50 96.13 96.71 97.54
15 dB 81.12 86.86 88.92 90.55 90.02 91.74 93.43
10 dB 54.81 76.73 74.27 75.07 75.87 82.13 85.08
5 dB 29.47 53.18 50.94 55.60 54.50 64.02 68.41
0 dB 18.73 23.15 24.72 26.48 28.92 38.66 43.20
Ave. 55.55 66.56 67.05 68.88 69.09 74.65 77.48

Table 2. Word accuracy of road cutting noise environments (%)
SNR HTK ETSI MMSE SEM PF 1 PF 2 PF 3
20 dB 96.68 96.90 99.20 99.10 98.34 99.26 99.72
15 dB 89.93 94.81 97.61 97.90 95.61 98.28 98.83
10 dB 70.28 89.81 91.77 92.43 89.84 94.66 96.93
5 dB 38.81 76.02 71.57 77.20 75.28 81.79 86.15
0 dB 22.29 48.48 43.60 51.00 49.43 58.00 63.89
Ave. 63.60 81.20 80.75 83.53 81.70 86.40 89.10
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Table 3. Average word accuracy with various parameter settings of the switching dynamical system for factory noise environments (%)
SNR γ = 0.1 γ = 0.2 γ = 0.3 γ = 0.4 γ = 0.5 γ = 0.6 γ = 0.7 γ = 0.8 γ = 0.9 γ = 1.0

20 dB 97.39 97.45 97.42 97.45 97.54 97.39 97.30 97.36 97.61 97.82
15 dB 92.91 93.09 92.88 92.78 93.43 93.15 93.55 93.49 93.55 93.52
10 dB 84.43 84.31 84.43 85.08 84.80 84.99 84.77 84.56 84.71 85.05
5 dB 67.95 67.76 68.07 67.70 68.41 68.31 68.10 67.67 68.25 67.82
0 dB 42.31 42.16 42.55 42.31 43.20 42.80 42.43 42.74 43.14 42.43
Ave. 77.00 76.95 77.07 77.06 77.48 77.33 77.23 77.16 77.45 77.33

Table 4. Average word accuracy with various parameter settings of the switching dynamical system for road cutting noise environments (%)
SNR γ = 0.1 γ = 0.2 γ = 0.3 γ = 0.4 γ = 0.5 γ = 0.6 γ = 0.7 γ = 0.8 γ = 0.9 γ = 1.0

20 dB 99.72 99.72 99.66 99.72 99.66 99.72 99.63 99.69 99.75 99.72
15 dB 98.99 98.89 98.99 98.93 99.08 98.83 99.14 98.86 98.96 99.02
10 dB 97.05 96.96 97.18 97.18 97.11 96.93 96.96 97.02 97.18 96.87
5 dB 86.18 86.03 86.12 85.75 85.97 86.15 86.37 85.54 85.94 85.88
0 dB 63.37 63.83 63.34 63.43 63.43 63.89 62.97 63.40 63.59 63.37
Ave. 89.06 89.09 89.06 89.00 89.05 89.10 89.01 88.90 89.08 88.97

parameters were set as: factory noise case γ = 0.5, and road cutting
noise case γ = 0.6.

In the tables, we can see that the results of “PF 3” exhibit the
best average word accuracy. They especially showed significant im-
provement from “PF 2.” These results suggest the effectiveness and
importance of the parameter switching of Polyak averaging depend-
ing on the state transition characteristics of non-stationary noise.

The processing performance of “PF 3” was approximately 1.0
times that of real-time by a 3.2 GHz Intel Xeon processor. On
the other hand, The processing performance of “SEM” were ap-
proximately 2.0 to 4.0 times that of real-time by the same CPU1.
From this fact, we can confirm that the proposed method, “PF 3”,
achieves good speech recognition accuracy and fast processing com-
pared with the conventionally used “SEM”.

Tables 3 and 4 indicate word accuracies with various parame-
ter settings of the switching dynamical system (“PF 3”). In all of
the conditions, the value of γ that shows the best word accuracy de-
pends on the noise type and SNR type. However, the differences of
word accuracies according to γ are less than 1%. Thus, these results
suggest that the sensitivity of γ is not a serious problem.

This study assumes that the state transition of the parameter sim-
ply depends on the state of the previous frame. However, to represent
the accurate state transition, it is necessary to consider the effect of
further preceding frames. This may be one of the most important
things for sequential noise parameter estimation.

4. CONCLUSION
A particle filter-based non-stationary noise estimation method was
presented in this paper. In the proposed method, we introduce a
switching dynamical system into particle filtering to cope with the
state transition characteristics of non-stationary noise. In the evalu-
ation results, we observed that the switching dynamical system sig-
nificantly improved speech recognition accuracy in non-stationary
noise compared with a dynamical system with time constant Polyak
averaging and feedback. In the future, we are planning to investigate
the switching dynamical system with consideration of the effect of
the further preceding frames, and applications to the sequential esti-
mation of acoustic transfer characteristics, such as the characteristics
of moving speech sources.
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