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ABSTRACT
Many compensation techniques, both in the model and feature do-
main, require an estimate of the noise statistics to compensate for
the clean speech degradation in adverse environments. We explore
how two spectral noise estimation approaches can be applied in the
context of model-based feature enhancement. The minimum statis-
tics method and the improved minima controlled recursive averaging
method are used to estimate the noise power spectrum based only on
the noisy speech. The noise mean and variance estimates are non-
linearly transformed to the cepstral domain and used in the Gaussian
noise model of MBFE. We show that the resulting system achieves
an accuracy on the Aurora2 task that is comparable to MBFE with
prior knowledge on noise. Finally, this performance can be signifi-
cantly improved when the MS or IMCRA noise mean is reestimated
based on a clean speech model.

1. INTRODUCTION

Estimating the statistics of non-stationary noise based on only the
noisy speech signal, is a very challenging task. Traditional voice
activity detection (VAD) based methods do not update the noise es-
timate when speech is present. This implies that the noise is assumed
stationary during these periods. In real life applications, the perfor-
mance of these methods can be disappointing, especially at low input
SNR levels. Recently, some noise estimation approaches have been
introduced that are capable of tracking the noise during speech ac-
tivity. In [1] an iterative stochastic approximation of the non-linear
model of the acoustic environment is proposed to recursively esti-
mate the noise cepstra with an EM-algorithm. In [2] a sequential
Monte Carlo method is used in combination with a random walk
noise model and an extended Kalman filter to estimate the time-
varying log-spectral noise mean. In [3] the noise log-spectra are
modelled by a first order auto-regressive (AR) process and tracked
by a particle filtering algorithm. Rainer Martin developed a min-
imum statistics (MS) technique [4] to estimate the power spectral
density of the noise. Based on an optimally smoothed version of the
noisy speech power spectral density, the noise estimate is obtained
by tracking the spectral minima in each frequency band and com-
pensating for the bias. Israel Cohen introduced an improved minima
controlled recursive averaging (IMCRA) approach [5] that consists
of two iterations of smoothing and minimum tracking. The noise es-
timate is obtained by averaging past spectral power values, using a
time-varying and frequency-dependent smoothing parameter that is
adjusted by the speech presence probability in subbands. The latter
is controlled by the minima values of a smoothed periodogram.
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In this paper, we use the MS or the IMCRA technique to esti-
mate the noise spectral mean and propose an estimate for the vari-
ance of the noise spectrum w.r.t. this mean. These noise statistics
are then non-linearly transformed to the cepstral domain, using the
log-normal approximation [6]. Finally, the cepstral noise mean and
variance are used as a time-varying Gaussian noise model in the con-
text of model-based feature enhancement (MBFE) [7] for noise ro-
bust speech recognition. Also, a method is described to reestimate
the initial noise model mean according to an MMSE-formula and a
clean speech model. Because this allows to incorporate more prior
knowledge about speech, a more accurate noise estimate is obtained.

The outline of this paper is as follows. First, the MS and the IM-
CRA technique will be briefly reviewed in section 2. Then, the trans-
formation of the spectral estimate of the noise mean and variance to
the cepstral domain will be explained in more detail in section 3. The
use of the obtained noise statistics in the context of model-based fea-
ture enhancement can be found in section 4. The reestimation of the
noise mean is explained in section 5. Finally, experimental results
on the Aurora2 digit recognition task and conclusions are given in
sections 6 and 7, respectively.

2. SPECTRAL NOISE ESTIMATION

Both the MS and the IMCRA noise estimation technique operate on
the noisy speech power spectrum. The advantage of moving into
the spectral domain is the good separability of speech and noise,
compared to the cepstral domain where recognition takes place. For
instance, narrow band noise will be spread over all cepstral compo-
nents. Also, a lot of detail is lost after the mel-integration.

The calculation of the power spectrum slightly differs from the
one in [4], but complies to the ETSI ES 201 108 standard for MFCC
feature extraction. We will use superscripts to denote the domain,
e.g. µspec

n is the noise mean in the power spectral domain, µmel
n is

in the mel-power domain, µlm
n is in the log-mel domain and µcep

n is
in the MFCC domain. A brief review of the MS and the IMCRA
technique will be described in the next subsections.

2.1. Minimum Statistics

The MS algorithm [4] is based on the observation that even during
speech activity the short term power spectrum of the noisy signal fre-
quently decays to values which are representative of the noise power
level. By tracking the minimum Pmin of a smoothed version P of
the noisy power spectrum |X(t, k)|2 within a finite window, an es-
timate of the noise floor can be obtained. It is assumed that a slid-
ing window of 96 consecutive values is large enough to bridge high
power speech segments. This implies that a sudden increase of the
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(smoothed) power spectrum that disappears within 96 frames, will
also be neglected in the noise estimate. The tracking of an impulsive
noise type, such as the firing of a machine gun, of which the statis-
tics are not stationary within this sliding window, will consequently
go wrong.

P (t, k) = α(t, k) P (t − 1, k) + (1 − α(t, k)) |X(t, k)|2 (1)

in which t represents the frame index and k is the frequency bin.
An optimal value for the time- and frequency dependent smoothing
factor α is derived in [4]:

α(t, k) =
0.96 αc(t)

1 +

„
P (t−1,k)

µ̂
spec
n,1

(t−1,k)
− 1

«2 (2)

in which αc monitors the tracking error between the short term smoothed
psd estimate and the actual averaged periodogram. The minimum
Pmin is multiplied by a bias correction factor Bmin to obtain a mean
estimate of the noise power spectrum µ̂

spec
n,1 .

2.2. Improved Minima Controlled Recursive Averaging

The IMCRA [5] noise estimate is obtained by a recursive averaging
procedure, using a time-varying and frequency-dependent smooth-
ing parameter β(t, k) that is adjusted by the speech presence prob-
ability p(t, k) in subbands. The latter is controlled by the a priori
and the a posteriori SNR-levels that are estimated based on the min-
imum values of the smoothed periodogram. By smoothing both in
time and in frequency, the correlation of speech presence in neigh-
bouring bins can be taken into account. To make the minimum track-
ing more robust during speech activity, two iterations of smoothing
and minimum tracking are carried out. The first iteration provides
a rough voice activity detection in each frequency band, such that
strong (speech) components can be excluded in the second iteration.

µ̄
spec
n (t + 1, k) = β(t, k)µ̄spec

n (t, k) + (1−β(t, k))|X(t, k)|2 (3)

β(t, k) = β̃ + (1 − β̃) p(t, k) (4)

with β̃ a constant. Also in this case, the final mean estimate of the
noise power spectrum µ̂

spec
n,2 is obtained after multiplying µ̄spec

n by a
bias correction factor. An explicit expression for this bias is derived
in [5]. The use of the speech presence probability for smoothing,
implies that the noise estimator is based on a variable time segment
in each frequency band.

2.3. Spectral Estimate of Noise Variance

Apart from an estimate of the mean noise power spectrum, also an
estimate of the variance of the noise spectrum w.r.t. this mean is
needed. Under the assumption that each periodogram bin |N(t, k)|2

is an exponentially distributed random variable, this variance is equal
to the squared mean. However, this assumption does not hold when
the signal is non-stationary. We found empirically that the underes-
timation of the spectral variance can be corrected by introducing a
scale factor. In our experiments, a good performance was obtained
when the value of this factor was equal to 2 for all noise conditions
of the Aurora2 and Aurora4 recognition tasks. Hence,

E{(|N(t, k)|2 − µ̂
spec
n (t, k))2} ≈ 2 (µ̂spec

n (t, k))2 (5)

in which µ̂n without a subscript ‘1’ or ‘2’ indicates that this is valid
for both the MS and IMCRA method.
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Fig. 1. Cepstral coefficient c0 of the true noise, the noise mean esti-
mate of MS and IMCRA. Aurora2 setA, subway noise, SNR5.

3. SPECTRAL TO CEPSTRAL TRANSFORMATION

The obtained estimate of the noise mean µ̂spec
n (t, k) and the diag-

onal covariance matrix Σ̂spec
n (t) in the power spectral domain are

first transformed to the log-mel spectral domain. Since the noise
distribution is assumed to be Gaussian in the cepstral domain, it is
log-normal in the linear spectral domain. Therefore, the log-normal
approximation as in [6] can be used for the non-linear transforma-
tion to the logarithmic domain. Let K be the mel-matrix, then for
each frame t we have µ̂mel

n = K µ̂spec
n and Σ̂mel

n = K Σ̂spec
n K′.

µ̂
lm
n (i) = log

“
µ̂

mel
n (i)

”
−

1

2
Σ̂lm

n (i, i) (6)

Σ̂lm
n (i, j) = log

 
1 +

Σ̂mel
n (i, j)

µ̂mel
n (i) µ̂mel

n (j)

!
(7)

with ′ indicating transpose. Finally, the DCT matrix C is used to
obtain estimates of the cepstral noise statistics : µ̂cep

n = C µ̂lm
n and

Σ̂cep
n = C Σ̂lm

n C′. After diagonalising the covariance matrix, these
statistics are used as a time-varying front-end noise model in the
model-based feature enhancement algorithm, as described in the next
section. An example of the estimated cepstral component c0 of the
noise mean for the MS and the IMCRA method is shown in figure 1.
As can be seen, the IMCRA noise estimate responds more quickly
to noise variations.

4. MODEL-BASED FEATURE ENHANCEMENT

MBFE is a front-end feature enhancement technique that generates
estimates of the clean speech cepstra, based on the noisy speech fea-
tures and two HMM models, namely λs for the clean speech and
λn for the noise. In the remaining of this section, all features are in
the cepstral domain and the superscript (.)cep will be dropped. The
state-conditional pdfs of clean speech st and noise nt are assumed
to be Gaussian mixtures with means µi

s, µ
j
n and diagonal covariance

matrices Σi
s, Σj

n, respectively. In this paper, the noise model λn is
based on the time-varying estimates of the mean µ̂cep

n (t) and vari-
ance Σ̂cep

n (t) from the MS or IMCRA method. In section 5, we ex-
plain how the noise model can be refined by an MMSE-reestimation
of the noise mean.
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The first step in the MBFE front-end [7], is to combine λs with
λn to obtain an estimate of the noisy speech HMM λx. The non-
linearity of the relationship xt = f(st, nt, h) (between speech, noise,
the channel h and the noisy speech xt) is approximated by a first
order Vector Taylor Series, with a state-dependent expansion point
given by (µi

s, µ
j
n, h) :

xt ≈ f
“
µ

i
s, µ

j
n, h
”

+ F
(i,j)

“
st − µ

i
s

”
+ G

(i,j)
“
nt − µ

j
n

”
(8)

in which the gradients of the combination function f(st, nt, h) have
the closed form :

F
(i,j) = C diag

 
1

1 + exp
`
C−1 (µj

n − µi
s − h)

´
!

C
−1 (9)

G
(i,j) = I − F

(i,j) (10)

with I denoting the identity matrix. The Gaussian pdf of xt then has
a mean and a covariance matrix :

µ
(i,j)
x ≈ C log

“
exp

“
C

−1 (µi
s + h)

”
+ exp

“
C

−1

µ
j
n

””
(11)

Σ(i,j)
x ≈ F

(i,j) Σi
s (F (i,j))′ + G

(i,j) Σj
n (G(i,j))′ (12)

An estimate of the channel h is obtained by an iterative EM-algorithm
to jointly remove additive and convolutional noise. Details on this
channel estimation can be found in [7]. Finally, the global MMSE-
estimate of clean speech is given by :

ŝ
MMSE

t =
X
(i,j)

P [i, j|xT
1 ] E

h
st|x

T
1 , i, j

i
=
X
(i,j)

γ
(i,j)
t ŝ

(i,j)
t (13)

in which (i,j) denotes the combined (speech, noise) state. The state-
conditional estimates are given by:

ŝ
(i,j)
t = µ

i
s + Σi

s (F (i,j))′
“
Σ(i,j)

x

”−1 “
xt − µ

(i,j)
x

”
(14)

5. REESTIMATION OF NOISE MEAN

The noise statistics from the MS or IMCRA method can be used
to obtain an MBFE noise model. However, very little information
about speech is used to derive this estimate. In this section, a method
is described to reestimate the initial noise model mean according to
an MMSE-formula and the clean speech front-end model λs. To this
end, the framework of section 4 is extended. Using equations (10),
(11) and (12), the new noise mean can be calculated :

n̂
MMSE

t =
X
(i,j)

γ
(i,j)
t n̂

(i,j)
t (15)

n̂
(i,j)
t = µ

j
n + Σj

n (G(i,j))′
“
Σ(i,j)

x

”−1 “
xt − µ

(i,j)
x

”
(16)

Figure 2 shows a spectrogram of the true noise, the MS estimate
and the noise mean after reestimation. The time-varying estimate
n̂MMSE

t allows to calculate an improved version of the combined
noisy speech model λx. To reduce the computational load, the up-
date of λx is limited to blocks of 100 frames, over which the noise
estimate is averaged. Preliminary experiments showed that perform-
ing more iterations to reestimate the noise model mean is beneficial
only for large vocabulary recognition tasks (e.g. Aurora4). On the
Aurora2 task, we did not observe any further improvement when
more than one iteration is done. With these improved statistics, the
clean speech estimate is obtained as in equation (13).
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Fig. 2. From top to bottom: spectrogram of the true noise, MS esti-
mate of noise and MMSE-reestimated noise. Aurora2 setA, babble
noise, SNR10.

6. EXPERIMENTS

Experiments are conducted on the Aurora2 digit recognition task for
the 4 noise types of setA and SNR-levels between 20 dB and 0 dB.
Features are extracted by the mel-cepstrum front-end, complying to
the ETSI ES 201 108 standard, except that a power spectrum in-
stead of an amplitude spectrum is used. For completeness, the aver-
age accuracy on setA when no enhancement is performed (only cep-
stral mean subtraction), is given in table 5. All other results are ob-
tained by enhancing the noisy speech by the MBFE-algorithm, using
a front-end speech model with 128 fully connected single-Gaussian
states, the parameters of which are obtained offline. A channel esti-
mate is calculated online by the recursive EM-algorithm [7].

The noise model consists of a single-Gaussian state with a time-
varying mean and diagonal covariance matrix. The latter are ob-
tained by transforming the MS or the IMCRA noise estimates (sec-
tion 2.1 and 2.2, respectively) to the cepstral domain. Optionally, a
reestimation of the noise model mean is done as in section 5. The
noise model statistics are updated in blocks of 100 frames with an ex-
ponential forgetting mechanism. It is possible to use a noise HMM
with more Gaussians. Instead of averaging the noise statistics over
all frames in a block, a clustering can be performed. If for instance
three Gaussians are used, one of them can represent the high energy
peaks of the noise, another the low energy frames and the third tracks
an average energy level. However, the spectral noise mean is already
a rather smooth version, such that the clustering in the cepstral do-
main does not result in significantly different noise Gaussians. In-
deed, preliminary experiments revealed that no better performance
is obtained when the MS or IMCRA noise estimate is clustered in
more Gaussians.

Front-end estimates are evaluated by the complex back-end recog-
nition system, with whole word digit models trained on the clean
speech training database of Aurora2 using the HTK scripts with de-
fault settings. The digit models have 16 emitting states with 20 Gaus-
sians per state, while the silence model has 3 states with 36 Gaus-
sians per state. Also, a one-state short pause model, tied with the
middle state of the silence model, is used.

Recognition results can be found in table 1 for the MBFE clean
speech estimate obtained with a MS noise model and in table 2 for
the MBFE clean speech estimate obtained with an IMCRA noise
model. The reference in table 4 is obtained when the MBFE noise
model consists of 1 fixed noise mean and variance that are trained
for each noise condition using the true noise data. As can be seen,

I  767



Subway Babble Car Exhibit. Avg.
20 dB 99.17 99.12 99.34 98.83 99.11
15 dB 98.31 97.94 98.60 97.16 98.00
10 dB 96.10 94.01 96.96 93.30 95.09
5 dB 91.00 76.00 90.37 82.75 85.03
0 dB 74.76 47.64 66.54 63.25 63.05
Avg. 91.87 82.94 90.36 87.06 88.06

Table 1. Recognition accuracy with MBFE and a MS noise model.

Subway Babble Car Exhibit. Avg.
20 dB 99.20 99.06 99.28 98.86 99.10
15 dB 98.25 97.67 98.81 97.10 97.96
10 dB 95.61 92.87 96.96 93.21 94.66
5 dB 89.35 73.19 90.69 81.70 83.73
0 dB 72.77 45.07 70.09 62.73 62.66
Avg. 91.04 81.57 91.17 86.72 87.62

Table 2. Recognition accuracy with MBFE and an IMCRA noise
model.

the performance with both the minimum statistics and the improved
minima controlled recursive averaging method is comparable to the
performance of the reference system, while the latter makes use of
prior knowledge of the noise. Only the babble noise seems difficult
to track accurately. Except for the car noise, the performance with
IMCRA is slightly worse than with MS. Both methods achieve a
better performance than the reference system on the car noise and on
the subway noise, since the noise model can be adapted online. Ta-
ble 3 shows that reestimating the noise mean improves the accuracy
of babble noise and exhibition noise significantly.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we have illustrated the use of two spectral domain
noise estimation approaches to obtain the cepstral noise statistics
that are needed in the context of model-based feature enhancement.
The minimum statistics method of Martin and the improved minima
controlled recursive averaging method of Cohen generate an esti-
mate of the noise power spectrum based only on the noisy speech
observation. We proposed an estimate of the variance of the noise
spectrum w.r.t. this mean noise power and non-linearly transformed
the corresponding statistics to the cepstral domain. The performance
of MBFE with a front-end noise model based on the MS or IMCRA
noise estimate was compared. Recognition results on the Aurora2
task indicated that the same level of accuracy could be obtained as
MBFE with a fixed noise model that is trained on the true noise data
for each noise condition, while the latter makes use of prior knowl-
edge of the noise. Also, a reestimation of the initial noise mean is
proposed that incorporates more knowledge about speech. A signif-
icant increase of the accuracy was observed.

A better discrimination between strong noise components and
speech could increase the accuracy of the noise estimate. As already
mentioned, a sudden increase of the noise power spectrum that dis-
appears within approximately a second, will have a high chance to
be neglected in the MS or IMCRA noise estimate. The tracking of
very non-stationary noise types, such as machine gun noise, is still
a challenging task. To this end, the incorporation of more knowl-
edge of speech in the spectral domain should help to make a more
accurate detection of non-speech events.

Subway Babble Car Exhibit. Avg.
20 dB 99.20 99.24 99.43 98.83 99.17
15 dB 98.25 97.97 98.87 97.38 98.12
10 dB 95.98 94.86 96.96 93.67 95.37
5 dB 91.28 82.95 90.07 84.85 87.29
0 dB 74.36 54.47 65.43 66.18 65.11
Avg. 91.81 85.90 90.15 88.18 89.01

Table 3. Recognition accuracy with MBFE and a reestimated noise
model (MS initialisation).

Subway Babble Car Exhibit. Avg.
20 dB 99.17 99.06 99.28 98.86 99.09
15 dB 97.88 97.79 98.48 97.16 97.83
10 dB 95.21 94.20 96.09 92.90 94.60
5 dB 89.47 82.35 87.09 82.57 85.37
0 dB 72.06 52.00 63.32 63.59 62.74
Avg. 90.76 85.08 88.85 87.02 87.93

Table 4. Recognition accuracy with MBFE and a fixed noise model
trained on noise data.

20 dB 15 dB 10 dB 5 dB 0 dB Avg.
97.62 90.87 70.32 37.87 14.07 62.15

Table 5. Average recognition accuracy on setA without feature en-
hancement (only CMS).
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