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ABSTRACT 
This paper proposes a hierarchical framework, which consists of 

three layers of classifiers, for automatic stress detection in English 

speech utterances. The top two layers are a linguistic classifier, 

which assigns stressed labels to all content words and unstressed 

labels to all functions words, and an acoustic classifier, which 

assigns stressed and unstressed labels with HMM based models 

and using only acoustic features such as MFCC, energy and f0. 

When there is no manual stressed label available, only the top two 

layers are activated. The best performance we achieved is 92.9%. 

The third layer in the framework is an AdaBoost classifier that can 

improve the accuracy by using more features and manual labels. 

The best result we obtained is 94.1%, which is approaching to the 

self-agreement ratio (97.4%) of the same annotator, or the upper 

bound of the performance. 

1. INTRODUCTION 
Labeling prosodic events in speech database is important for both 

speech analysis and speech synthesis. Among many prosodic 

events, stress is one of the most important one. “What many 

phoneticians and linguists have called stress, and what most 

laymen readily understand under this term, refers to nothing more 

than the fact that in a succession of spoken syllables or words some 

will be perceived as more salient or prominent than others” [1]. It 

is money and labor consuming to label stressed syllables manually, 

especially when the speech database is very large. An efficient and 

reliable automatic prosody labeler is always desired.  

Higher intensity, greater duration and higher fundamental 

frequency are believed to be the primary acoustic cues for stressed 

syllables, although how the three factors work together to make a 

syllable more prominent than the surrounding ones is still not very 

clear. Therefore, they are used as the main acoustic features in the 

stress detect task in some studies [2, 3]. Stress is found to be 

correlated with voice quality as well. Usually, stressed vowels are 

pronounced more clear and unstressed vowels tend to be reduced. 

Hence spectral parameters such as Mel-Scale Frequency Cepstral 

Coefficients (MFCC) are used in some stress detection studies [4]. 

Both [4] and [5] model the acoustic features of stressed/unstressed 

vowels or syllables with Hidden Markov Model (HMM) and 

achieve reasonable results.  

When listening to an utterance, people not only use acoustic 

cues but also syntactic and/or semantic cues to help the location of 

stresses. Therefore, features that are derived from texts, such as 

part of speech (POS), N-Grams of POS and the position in phrase 

are used in stress detections as well [5-7]. [4] uses Bayesian 

decision and [6] uses ANN to combine the results from text level 

cues with those from acoustic cues. All these methods need some 

manually labeled training data for the task.  

The word accuracy of these stress prediction algorithm is 

normally between 80-90%. Since the corpora and the methodology 

of stress labeling are different, it is difficult to compare these 

results with each other. Most corpora used for the stress detect task 

are speaker independent [2-7]. ToBI (Tone and Break Index) are 

used in some corpora and 3-4 levels of stress are labeled in others 

[5, 8].  

In this paper, a hierarchical approach is proposed to detect 

stress with spectral features, prosodic features and linguistic 

features. The approach can reach reasonable results without any 

manually labeled data and will get pretty high accuracy when small 

amount of manually labeled training data are provided.  

In Section 2, the framework of this hierarchical approach and 

its main modules are introduced. Evaluations and results are given 

in Section 3 and conclusions are given in Section 4.  

2. A THREE-LAYER CLASSIFIER FOR AUTO 

STRESS DETECTION 
According to Pike [1], content words which carry the major 

semantic weight of the sentence are usually stressed and function 

words which have less contribution to semantic content are 

normally unstressed. When investigating the distribution of 

stresses in our speech corpus, in which all words are labeled as 

stressed/unstressed manually by listening, we found that more than 

15% of function words are stressed and only 3-4% of content 

words are unstressed.  

Therefore, we propose a hierarchical approach shown as in 

Figure 1. It has 3 layers. First, all words in an utterance will be 

classified into two categories, content word and function word, by 

the linguistic classifier. Layer 2 is the acoustic layer; classifiers are 

utilized individually to function and content words. In third layer, 

label refinement modules are employed on two of the four 

branches outputted by the layer 2. One branch is the acoustic 

stressed vowels in function words and the other is the acoustic 

unstressed vowels in content words. The label refinement modules 

are trained by the manually labeled data. The three classifiers are 

described in details in the subsections below. 

In the figure, S and U mean the stressed and unstressed 

decision of each classifier. And 1 and 2 in two label refinements 

module mean they use different models. Similarly, the models in 

the two acoustic classifiers are the same.   
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Without manual labels, the hierarchical framework is shrunk to 

which in the shadow in Figure 1. An acoustic classifier is used to 

detect stressed vowels in function words and all content words are 

labeled as stressed. The acoustic classifier can be trained from the 

speech corpus without manually labeled stresses.  

Figure 1: Block diagram of the hierarchical approach for automatic 

stress detection. 

2.1. The linguistic classifier 
The linguistic classifier is very straight forward, i.e. POS tagging 

and classifying words into content/function category by their POS.  

2.2. The acoustic classifier 

2.2.1. Training stressed/unstressed HMMs for each vowel 
In conventional speech recognition task, about 40 phones are 

defined for English. Stressed vowel and unstressed vowel share the 

same model. In our stress detection task, stressed vowel and 

unstressed vowel are treated as two phones, i.e. 56 phones are 

defined. And, in order to reflect the syllable structure in words, 

consonants at the onset position of syllables are distinguished from 

consonants at the coda position, and then 78 phones are defined.  

Figure 2: Flowchart of training HMMs for stressed/unstressed 

vowels. 

The flowchart of training stressed/unstressed HMMs is given in 

Figure 2. In previous studies, manually labeled stress-marks are 

always required to train stressed/unstressed models. In our 

approach, the speech corpus is labeled automatically by the 

linguistic classifier, i.e. the lexical primary stress of content words 

will be marked as stressed syllable and all other syllables are 

unstressed. Then, the training process is similar to that in the 

speech recognition task. When small amount of manually labeled 

data are available, these data can be used to do adaptation to make 

the models more accurate. Acoustic features utilized in the model 

training include fundamental frequency, energy and spectral 

parameters. 

2.2.2. Stress labeling 
The stress labeling process is in fact a decoding process within a 

finite state network shown in Figure 3. The vowels in the syllables 

that carry the lexical stresses have two nodes, the S (stands for 

stressed) node and U (stands for unstressed) node and other vowels 

have only U node. Each consonant has only one node, either O 

node (stand for consonant at the onset position) or C node (stand 

for consonant at coda position). For words with multiple syllables, 

parallel paths will be provided; each has at most one S node (as the 

word “city” shown in Figure 3). Words aligned with stress vowel 

are labeled as stressed and other words are labeled as unstressed.  

Figure 3: Finite State Network in Decoding. 

2.3. The refinement module 
AdaBoost [9] is often used to adjust the decision boundaries to 

reduce false decisions and has achieved good performance in many 

fields [10]. The advantage of AdaBoost is that it can boost a 

sequence of weak classifiers, where the weights of each classifier 

are updated dynamically according to the errors in previous 

learning.  

When we have manually labeled stress marks, AdaBoost is 

used to reduce the acoustic classification error with the many 

features besides the output of HMM. In each step of AdaBoost, a 

one dimensional weak classifier is utilized with one feature whose 

accuracy is the best.  

Three types of features are used. The first type is the likelihood 

score from the stressed and unstressed model of a given vowel. The 

second is prosodic features that can not be modeled with HMM 

directly, such as the duration of the vowels and differences in pitch 

level of current vowel and its neighbor vowels. The third type is 

linguistic features beyond POS, such as uni-gram, bi-gram and tri-

gram score of a given word because frequently used words tend to 

be reduced [11].  

3. EVALUATION AND RESULTS 

3.1. Speech Corpus 
Our speech corpus contains 6,412 utterances, recorded by a 

professional female speaker in American English. Stress marks 

have been labeled by a well trained annotator in the first 3,000 

utterances. The instruction for the annotator is to label the 

prominent words in the utterances by listening to the waveforms. 

1,000 utterances are labeled twice by the same annotator in a time 
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span of 3 months. The agreement ratio between the two labels is 

97.4%. This is the upper bound for auto-labeling.  

The first 1000 utterances in the corpus are kept as testing set. 

The left utterances are used for training. 

When performing boosting in label refinement, the testing set 

is split into two equal parts for developing and testing alternately. 

Cross validate is done and the average error rate is the final output.  

3.2. Accuracy of the linguistic classifier  
If all content words are labeled as stressed and function words as 

unstressed, the agreement ratio between linguistic classifier and 

human annotator is 91.3% within testing set.  

3.3. Accuracy of the acoustic classifier 
The accuracy of the acoustic classifier is first optimized without 

integrating into the hierarchical framework and models are trained 

without manual stress marks.  

3.3.1. Model configuration 
In previous studies, since only small amount of manual labels are 

available, stressed/unstressed models are normally phone 

independent. [5] uses position dependent stress models. In our 

approach, since no manual labels are required, the whole training 

set is used. Three types of models are compared. First, mono-

phone models (using the 56 phone definition) are trained and 172 

states are obtained. Then mono-phone models are split into tri-

phone models (2580 states are obtained). Although tri-phone 

model can model the context of a vowel, the position of a vowel in 

syllable may also affect. Hence, each consonant is split into onset 

and coda categories, which result position based tri-phones (based 

on the 78 phone definition). The total number of states is 2634. 

Stress label accuracies with the three types of models are given in 

Figure 4, from which it is seen that the position based tri-phone 

performs the best, i.e. the separation of onset consonants from coda 

consonants does help the detection of stressed syllables. The 

position based tri-phone models are used in the remaining 

experiments. 

80

82

84

86

88

90

92

A
cc

u
ra

cy
 R

at
e 

(%
)

Mono-phone
Tri-phone
Position based Tri-phone

Figure 4: Stress prediction accuracy of different model definition. 

3.3.2. Feature selection 
HMM models are trained with various combinations of spectral 

parameters (12 dimension MFCC, their first and second order 

derivatives), energy (time domain log energy, its first and second 

order derivatives) and f0 (in log scale and smoothed). The error 

rates of these models in testing set are compared in Figure 5.  
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Figure 5: Error rate of different feature sets. 

Figure 5 shows that the best performance is achieved by using 

all features. The feature used in Figure 4 is also 

MFCC+Energy+F0.  

The best error rate of the acoustic classifier is 10.0% when it is 

used alone, which is worse than the result of using the linguistic 

classifier alone.  

3.4. Accuracy of the hierarchical approach (without 

manual labels) 
Although the accuracy with acoustic classifier is about 10% worse 

than which of linguistic classifier, the error rates in function 

category and content category are quit lopsided. In function word 

category, the error rate of linguistic classifier is 15.7% while that 

of the acoustic classifier is 11.7%, and in content word category 

the error rate of acoustic classifier is 8.9% and that of the linguistic 

classifier is only 3.7%. Hence only adopting acoustic classifier is 

in function category will improve the accuracy of linguistic 

classifier. 

When the two classifiers are integrated into the hierarchical 

framework like the shadow part in Figure 1, the overall accuracy is 

increased to 92.9%. It is worth to note that this accuracy is 

obtained without any manual labels in model training. 

3.5. Accuracy of the hierarchical approach (with manual 

labels) 
When some manual labels are available, they can be used to refine 

the HMM models and to train the AdaBoosting model. 

3.5.1. Accuracy of acoustic models 
When manual stress labels are available, they are used in model 

adaptation to improve the model accuracy. Error rates obtained 

with different amount of manual labels, tested in a stand alone 

mode, are shown in Figure 6. It is seen that only when enough 

manual labels, saying 1000 utterances or above, the error rate will 

be reduced a little. Adaptation barely works here, so we canceled it 

in our later experiments. 
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Figure 6: Error rate of different size of the manual labels.

9.2

9.4

9.6

9.8

10

10.2

10.4

10.6

200 300 500 1000 2000
Sentences number for adaptation

E
rr

o
r 

R
at

e 
(%

)
With Adaptation

No Adaptation

3.5.2. Boosting the results with more features 
In function category, a boosting classifier is trained to reduce the 

mismatch between stressed output of acoustic classifier and manual 

labels, and in content category, another classifier is trained to 

reduce the mismatch between unstressed output of acoustic 

classifier and manual labels. Duration, relative pitch and uni-gram 

are used as the features besides the differences in likelihood scores 

by the stressed and unstressed models. The classifiers are trained in 

the developing set and tested in the testing set. The final accuracy 

increases to 94.1%.  

3.6. Final result 
The final results are shown in Figure 7. In that figure, LO means 

linguistic only. It can be treated as the base line of our system. SA 

is the self agreement ratio of the human annotator. It can be treated 

as the upper bound of our system. HNM means hierarchical model 

without manual labels. The error rate of it decreased 18.4% from 

which of linguistic only. HM means hierarchical model with 

manual labels of 500 sentences. The error rate of it decreased 

32.2% from which of linguistic only.  
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4. CONCLUSION 
This paper proposed a three layer hierarchical framework for 

automatic stress detection in English. The first layer is a simple 

linguistic classifier which separate function/content words, the 

second layer is a HMM-based acoustic classifier and the third layer 

contains two AdaBoost-based classifiers.  

The manually labeled data are not adopted in training acoustic 

model. Without manual stressed marks, the hierarchical framework 

is also worked well by simplifying into 2 layers. Acoustic results 

are only used in the function category and all the content words are 

treated as the stressed one.  

With the manual labels, we adopted it to refine the output of 

acoustic classifier in special condition, the stressed output part in 

function category and unstressed output in content category part. 

The score of HMM model together with other acoustic and 

linguistic features are utilized to train a classifier with AdaBoost.  

When no manual stress labels available, only the top two layers 

are activated and the best accuracy we got is 92.9%. When 500 

sentences manual labels are provided, the third layer will be 

activated. The best accuracy we got is 94.1%, which is pretty good 

compared with the upper bound of 97.4%, the self agreement ratio 

of the human annotator. 

In future work, prosody boundary will be predicted together 

with stress. Since prosody boundary will affect the acoustic feature 

like pitch and duration, predicting them together may be better 

than predicting them individually.  

This work will be implemented into other languages like 

Spanish and French in future.  
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