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ABSTRACT 

This paper proposes a new approach for measuring the 
target cost in unit selection, where the difference between 
the target and candidate units is estimated by the Kullback-
Leibler Divergence (KLD) between the context-dependent 
Hidden Markov Models (HMM). In order to model the 
left/right phonetic context, biphone models are generated 
by merging regular tri-phone HMMs sharing the same 
left/right phonetic context. To characterize prosodic 
contexts, various sets of prosody-sensitive monophone 
HMMs are trained. KLDs between these context models are 
calculated as the replacement cost between the contexts. 
Perceptual experiments show that the resulting synthesized 
speech sounds slightly better than those with the manually-
tuned costs. An important advantage is that the proposed 
method can be conveniently applied to new corpora or 
languages without the need of collecting perceptual data. 

1. INTRODUCTION 

In unit-selection text-to-speech (TTS) systems, the task of 
unit selection is implemented by finding a sequence of 
database units that minimize the cost function. The cost 
function measures the distortion of the synthesized 
utterance, and is a summation of two sub-cost functions: a 
target cost, which describes the difference between the 
target segment and the candidate segment, and a 
concatenation cost, which reflects the smoothness of the 
concatenation between selected segments. Defining a cost 
function that can reflect concatenation unnaturalness just as 
a human listener might perceive it is significant for speech 
quality, and not a trivial task, since a number of factors are 
crucial for speech quality and their functionalities and 
interactions  are not fully studied. Furthermore, it is 
difficult to evaluate the validity of a change in the cost 
calculation, since it normally improves the speech quality 
in some cases, but hurts the quality in other cases. 

Various techniques have been proposed to optimize 
parameters in the cost function. CHATR system [1] used an 
automatic scheme for optimizing weights in the cost 

function by minimizing an objective measure between the 
reference sentence and the synthesized voice. A number of 
researchers have investigated the concatenation cost 
function by means of increasing the correlation between 
spectral distances and perceptual discontinuities [2][3].   

In our previous work [4][5], the cost function was 
optimized by maximizing the correlation between the 
objective cost and the Mean Opinion Score (MOS). A set of 
synthesized utterances were scaled in MOS, and meanwhile 
the unit sequences composing these utterances were saved. 
By fixing the unit sequences, the objective cost can be 
recalculated with any changes in the cost function, and its 
correlation to the MOS can serve as an objective measure 
for examining the change validity. Finally, the optimized 
cost function has been significantly improved in its 
correlation to the MOS. 

One of the shortcomings in the above researches is that 
the cost function must be optimized with respect to
perceptual scores, which are difficult to collect. Thus, the 
investigated parameters are generally restricted within a 
limited range, such as joint smoothness on particular phone 
segments. Also, the optimization process is inconvenient to 
duplicate on new speech corpora, or languages. 

In this paper, we apply KLD to estimate the target cost 
function, i.e. the mismatch cost between a target and 
candidate unit is calculated using the distances between the 
acoustic models that statistically represent these units. The 
proposed method has the advantage of applying to new 
corpora or languages without the need of collecting
perceptual data. 

 This paper is organized as follows. Section 2 introduces 
the concept of KLD. The target cost used in our Mulan TTS 
system is summarized in Section 3. The method for 
modeling units in different contexts and calculating the 
target costs is explained in Section 4. The experiments and 
the perceptual evaluation results are presented in Section 5, 
and conclusions in Section 6. 

2. KL-DIVERGENCE 

The KLD [7][8] is a measure of the dissimilarity between 
two probabilistic models. If M  and M

~  represent two 
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continuous distributions of feature x, the KLD between 
them is defined as:  
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For HMMs, the probability function is complex and 
there exists no simple closed form expression for 
calculating the KLD between HMM models. In [9], we 
proposed an effective algorithm for measuring KLD 
between two GMM-based HMMs. 

The measure has been successfully applied to various 
model-based applications ranging from distortion measure 
to model clustering. Especially, in concatenative speech  
synthesis [2][3], KLD has been successfully used to 
calculate the spectral distance between two concatenated 
speech segments across the boundary, where spectral 
envelopes at the boundary are viewed as the probabilistic 
distributions in Eq. 1.  

In this paper, KLD between context dependent HMMs is 
proposed as the measurement of target cost between a target 
and candidate unit, which are represented by their 
corresponding context dependent models, respectively. 

3. THE TARGET COST IN MULAN TTS SYSTEM 

In most concatenative TTS systems, all tokens of a unit are 
first clustered by their phonetic contexts, and then pruned 
by their distances from the core of the cluster or by their 
HMM scores.  In these systems, prosodic features are used 
to select from several tokens within the same cluster. When 
the prosodic features of the selected unit do not match their 
predicted target, they will be scaled with signal processing 
methods. However, the synthesized speech often sounds 
unnatural. Typically, repetitious and monotonous prosody 
patterns are perceived, since natural variations in prosody 
of human speech are replaced with the most frequently used 
patterns.  

In our previous work on the bilingual TTS system, 
Mulan [6], a prosody-constrained unit selection algorithm 
was adopted. The features used for searching the best token 
sequence in the unit selection phase incorporate two types: 
phonetic context features and prosodic context features. The 
phonetic context features are composed of Left Phonetic 
Context (LPhC) and Right Phonetic Context (RPhC), and 
the prosodic context features consist of Position in Phrase 
(PinP), Position in Word (PinW), Position in Syllable 
(PinS), Accent Level in Word (AinW) and Emphasis Level 
in Phrase (EinP). All of these features are discrete. 
Continuous prosodic features, like duration, power, and 
pitch, are excluded from the system, since it often produces 
monotonous prosodic patterns.  

The cost function is defined as a weighted sum of the 
target cost and the concatenation cost. The target cost is the 
weight sum of distances in prosodic constraints and 
phonetic constraints; the concatenation cost takes binary 

values: 0 when the two segments to be concatenated are 
succeeding segments in the recorded speech and 1 
otherwise.  

Since each feature takes categorical values, which 
denote a context class, the distances between context classes 
of a candidate and target unit can be looked up in a distance 
table. The values in the table can be assigned by human 
experts. The classes that are far apart in perception should 
receive a high cost value, and vise versa.  

Though the cost function used in [4][5] is proven to 
replicate, to a great extent, the perceptual behavior of 
human beings, it may not be optimal, even becoming worse 
for new speakers or new languages. Furthermore, in the 
current cost function, all items are assumed independent 
from each other without any deep study. In the next section, 
a method for automatically generating distance tables is 
introduced and the method can be used to generate phone 
dependent distance tables as well. 

4. MEASURING TARGET COST WITH KLD 
BETWEEN CONTEXT DEPENDENT HMMS 

The target cost takes into account the compatibility between 
the target and the candidate unit. Let ],,,[ 21 Jtttt L=  and 

],,,[ 21 Juuuu L=  denote the target and candidate feature 

vectors, respectively. The original target cost is defined as: 
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where JjCt
j L,2,1, = , is the sub-cost for the jth element, 

and is weighted by t
jw . 

The sub-costs for categorical features can automatically 
be estimated by acoustically modeling the context classes of 
the feature. First, we build acoustic HMMs from the speech 
database to represent the context classes for each feature 
element; then the distances between the probabilities of 
these acoustic models are calculated as the mismatch 
between the corresponding context classes.  

KL-Divergence is a sound measure of the dissimilarity 
between two probabilistic models, so it is intuitively 
adopted in our study. The target cost can be rewritten in 
terms of KL-Divergence as given in Eq. 3: 
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where 
jT  and 

jU  denote the target and candidate models 

corresponding to unit feature 
jt and 

ju , respectively. A 

schematic diagram of measuring the target cost for unit 
it

and 
ju with KLD between HMMs is shown Figure 1.  

The key problem in the KLD-based target cost 
estimation is how to build reliable context-feature HMMs, 
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which essentially characterize the addressed context classes, 
while removing the influence of other features.   
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Figure 1: Schematic diagram of measuring the target cost 
with KLD between HMMs. 

4.1. Phonetic target costs 

The phonetic target cost consists of sub-costs for the Left 
Phone Context (LPhC) and the Right Phone Context 
(RPhC). For example, when selecting a unit /aw/ for the 
target phone sequence /m aw/, a unit /aw/ following a /m/ is 
desired; yet if only /aw/’s following other phones are 
available, we need a measurement that can help us to rank 
the similarity of LPhC of the available /aw/’s.  

We propose a left biphone model to represent the LPhC. 
The models are estimated from the regular tri-phone 
HMMs [10], particularly accounting for the discrimination 
in the left phonetic context. Let l-c+r denote a triphone 
model, where l, c, and r are the left phone, center phone, 
and right phone, respectively. When our focus is on the 
LPhC of c, all triphone models with center phone c, the 
specified left phone l and whatever right phone are 
extracted and merged into a left biphone model l-c for c. As 
a result, the left biphone models are independent from their 
right context, i.e. the states on the right half of the model 
should have little discriminating information about the 
right phone context and the states on the left half of the 
model preserve the discrimination between left phones. The 
KLD between left biphone models l-c and k-c is calculated 
with the algorithm depicted in [9]. To express the 
mismatch between LPhC l and k for unit c, the KLD is 
further normalized with a linear scaling function into a 
fixed range, like from 0 to 1, so that the weight of the sub-
cost for this feature can remain somewhat stable. 

In such a way, the distances for any left or right phone 
mismatch can be represented by the normalized KLD of 
left/right biphone models of a unit. It should be pointed out 
that the distance tables obtained with the proposed method 
are unit dependent, i.e. if we define 40 phones for English, 
we will obtain 40 distance tables.  

4.2. Prosodic target costs 

The prosodic target costs consist of the sub-costs for 
Position in Phrase (PinP), Position in Word (PinW),
Position in Syllable (PinS), Accent Level in Word (AinW) 
and Emphasis Level in Phrase (EinP), etc.  

We present a scheme to build separate sets of prosody-
sensitive monophone HMMs to represent different prosodic 
categories. Here, we use PinW as an example. It has 4 
categorical values: at Head, Middle, Tail of a word, or a 
Mono-syllable word. To model PinW context, the base 
monophone HMMs are first trained, then each base phone 
is   expanded into 4 PinW sensitive HMMs, i.e. the 
expanded phone set takes into account PinW with the form 
of c:x, where x is phone c’s PinW label. For example, the 
word ‘robot’ with pronunciation /r ow – b ax t/ is composed 
of two  syllables, where the first syllable is with PinW Head, 
and the second with Tail, thus the phones are expanded 
with the form as /r:h ow:h – b:t ax:t t:t/, where h stands for 
Head, t for Tail. The normalized KLD between models 

1:xc

and 
2:xc  represents the distance between PinW 

1x  and 
2x

for unit c.  
All the prosodic target costs can be calculated by 

creating models of mono-phones extended with prosodic 
labels, and comparing the models with KLD. Likewise, the 
distance tables are unit dependent. Table 1 shows an 
example for the model expressions of a unit sequence.  

Table1: An example for the model expressions on various 
contexts. (The input sentence is ‘All together’; In 
Pronunciation layer, 1 means stressed syllable and ‘-’ 
means syllable boundary; In Position in Word layer, h, i, t 
and m denote Head, Middle, Tail and Mono; In Position in 
Syllable layer, o, n, c and m, stand for Onset, Nucleus, 
Coda, and Mono, respectively; In Accent in Word layer, 1 
denotes stressed, 0 unstressed.) 

5. EXPERIMENTS AND RESULTS 

5.1. Experimental setup 

The Microsoft Mulan English TTS speech corpus is used to 
evaluate the performance of the proposed method. The 
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corpus contains about 6000 sentences, which were recorded 
by a professional speaker and annotated with symbolic 
prosodic labels, like break level, stress, emphasis, etc.  

Cost tables for each feature component are calculated 
separately. Context-dependent HMMs are trained for each 
context separately. As for the phonetic target cost, 3-state 
HMMs are trained for all triphones, where 39-dimensional 
MFCC features are extracted and 8 Gaussian Mixtures with 
diagonal covariance matrices are computed for each state. 
Then the left/right biphone HMMs are generated by 
merging triphone models sharing the same phonetic 
contexts. Similarly, prosody-sensitive monophone HMMs 
are trained for calculating the prosodic target costs. KLDs 
between these models are computed as the replacement cost 
between the target and candidate units.  

The weights for each component are not studied in this 
paper. At this point, these weights are maintained as the 
original manually-tuned weights.  

5.2. Subjective evaluation 

700 sentences are synthesized with both the KLD-based 
cost tables and the manually-tuned tables. They are 
generated in two conditions: using only 1500 sentences 
from the speech database (denoted as DB1) and using the 
full speech database (denoted as DB2).   Among them, 60 
pairs of sentences with the maximal difference ratio in their 
selected unit sequence are used for the listening test. 8 
subjects participate in the test and they are forced to choose 
one from each pair which sounds more natural.  

The result for the preference test is given in Table 2. It 
shows that the synthetic speech obtained with the proposed 
KLD-based cost sounds slightly better than that with the 
manually-tuned costs. It is also observed that the preference 
on DB2 with the KLD-based cost performs a little better 
than that on DB1 (also, the difference between the two sets 
on DB2 is significant, P<0.00001). One possible reason is 
that DB2 contains many more candidate units, which 
enable the subtle difference between competing context 
features to be exposed. 

Table 2: Preference test results. (A: manually-tuned; B: 
proposed method)

6. CONCLUSION 

In the paper, we proposed a novel method for measuring 
the target cost in unit selection with KLD between context-
dependent Hidden Markov Models (HMM). Various 

context-dependent HMM models are trained to represent 
units in different phonetic and prosodic contexts.  KLD 
between pairs of these models are used as the 
approximation of the replacement cost between the two 
contexts. Perceptual experiments show that the resulted 
synthesized speech sounds slightly better than those 
synthesized with the manually-tuned costs. More 
importantly, the proposed method is easy to apply to any 
new corpora or languages, since the cost weights are 
trained without involving perceptual scores.   

Future work will be directed towards integrating the 
concatenation cost function and the component weights into 
the proposed scheme. Furthermore, we will investigate the 
capability of the KLD-based cost tables for other languages.  
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  Prefer A Prefer B

DB1 47.2% 52.8% 

DB2 45.3% 54.7% 
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