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ABSTRACT
We present the framework for a Scalable Phonetic Vocoder
(SPV) capable of operating at bit rates from 300 - 1100 bps.
The underlying system uses an HMM-based phonetic speech
recognizer to estimate the parameters for MELP speech syn-
thesis. We extend this baseline technique in three ways. First,
we introduce the concept of predictive time evolution to gen-
erate a smoother path for the synthesizer parameters, and show
that it improves speech quality. Then, since the output speech
from the phonetic vocoder is still limited by such low bit
rates, we propose a scalable system where the accuracy of the
MELP parameters is increased by vector quantizing the error
signal between the true and phonetic-estimated MELP param-
eters. Finally, we apply an extremely flexible technique for
exploiting correlations in these parameters over time, which
we call Joint Predictive Vector Quantization (JPVQ). We show
that significant quality improvement can be attained by adding
as few as 400 bps to the baseline phonetic vocoder using
JPVQ. The resulting SPV system provides a flexible platform
for adjusting the phonetic vocoder bit rate and speech quality.

1. INTRODUCTION

The phonetic vocoder [1] is an attractive approach for speech
coding at very low bit rates. In this system, the informa-
tion content of the speech signal is extracted with a phonetic
speech recognizer, and the prosody of the particular utter-
ance is encoded with a separate scheme such as pitch contour
quantization. Conceptually this approach reduces the speech
waveform down to its lowest information content: the partic-
ular phrase being spoken and the speaking style of the utter-
ance. This has led to reasonable speech quality at bit rates
around 300 bps [1, 2, 3, 4].

However, the speech quality of phonetic vocoders is in-
herently limited by factors such as speech recognition errors,
acoustic background noise, and speaker variation. This pa-
per presents the framework for a scalable phonetic vocoder,
capable of operating at bit rates from 300 - 1100 bps with
continually increasing quality.

This work was sponsored by the Defense Advanced Research Projects
Agency under Air Force Contract F19628-00-C-0002. Opinions, interpreta-
tions, conclusions, and recommendations are those of the authors and are not
necessarily endorsed by the United States Government.

2. BASELINE PHONETIC VOCODER

Our system combines a phonetic speech recognition algorithm
with a speech synthesizer, as shown in Figure 1. The recog-
nizer uses Hidden Markov Models (HMM’s), with each of
39 monophones characterized by five states. For each phone
state, the feature vector distribution is modelled by a Gaus-
sian Mixture Model (GMM). Feature vectors represent the 16
kHz-sampled speech signal every 10 ms using mel cepstra,
deltas, and delta-deltas. The speech recognition models were
developed from the training partition of the TIMIT 1 corpus.

The speech synthesizer in this system uses the Mixed Ex-
citation Linear Prediction (MELP) model [5]. This model
is based on the traditional LPC vocoder with either a peri-
odic impulse train or white noise exciting an all-pole filter,
but contains four additional features: mixed pulse and noise
excitation, periodic or aperiodic pulses, adaptive spectral en-
hancement, and pulse dispersion filter.

In our phonetic vocoder, all MELP parameters except pitch
are estimated from the speech recognition output. Every 10
ms, the LPC coefficients, gain, and voicing mixture are up-
dated based on the estimated phone state and then interpo-
lated for synthesis. Since the recognition model parameters
are in the form of cepstra and deltas, we separately train the
mean MELP parameters for each phone state estimated by
the recognizer over the training data (TIMIT). To make pa-
rameterization easier for clustering, the five bandpass voicing
decisions are converted to a single voicing cutoff frequency
assuming a lowpass/highpass mixing structure. This is ac-
complished by analyzing the number of voiced bands Nv ,
assuming that the lowest Nv bands are actually voiced, and
using the cutoff frequency of the highest voiced band.

We estimate that the total bit rate of this phonetic vocoder
is about 300 bps, as shown in Table 1. As with much previ-
ous work on phonetic vocoders, we have chosen to focus our
initial experiments on the most important issues of coding the
spectrum, gain, and voicing. Therefore, we have left imple-
mentation of the state path and pitch contour quantization for
future work; our bit-rate estimates for these are based on [3]
and [6], respectively.

We have evaluated the performance of this baseline pho-
netic vocoder using informal listening with speech material

1Available from http://www.ldc.upenn.edu
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Fig. 1. Scalable Phonetic Vocoder

Parameter Bits/phone Bit Rate

Phone 5 50
State path 10 100
Pitch contour 15 150

Total 30 300

Table 1. Estimated baseline phonetic vocoder bit allocation
with mean phone duration of 100 ms.

from the testing partition of TIMIT. At best the intelligibil-
ity and quality of this system can be described as “marginal”.
Surprisingly, even though the coder is speaker-independent,
some character of each individual speaker is maintained. Since
there is only one set of MELP parameters for each phone state
over all speakers, presumably this comes from the prosody in-
formation (timing and pitch).

3. PREDICTIVE TIME EVOLUTION

A problem with the phonetic vocoder speech output is a lack
of smoothness. Since the MELP parameters change relatively
abruptly from phone to phone, the speech sometimes sounds
“jumpy”. One solution to this problem is to include delta cep-
stral information (both forward and backward) in the synthe-
sis [3], but for our application a left-to-right evolution in the
MELP parameter space would be preferrable.

We introduce this smoothing with a predictive time evolu-
tion. For each speech frame, the new MELP parameter vector
is generated with a combination of the past frame vector and
the new mean value for the phone state; this is the equiva-
lent of 0-bit predictive vector quantization. We assume a di-
agonal prediction matrix, so that each parameter has its own
prediction coefficient. For each phone state, we now train a
codevector and a prediction coefficient vector. In informal lis-
tening, this predictive model provides a noticeable improve-
ment in quality without increasing the bit rate of the phonetic
vocoder. However, the speech quality is still quite low, so we
would like to find a way to increase the performance of the
phonetic vocoder even if this requires an increase in bit rate.

4. SCALABLE PHONETIC VOCODER

The principle behind our Scalable Phonetic Vocoder (SPV)
system is to encode the error between the mean MELP param-
eters for the current phone state and the true parameters ana-
lyzed for the speech frame. Coding this parameter error sig-
nal at low bit rates using vector quantization (VQ) improves
quality while staying within the phonetic vocoder framework;
as the bit rate increases the system becomes a full MELP
vocoder. Note that this can be interpreted as a tree-structured
vector quantization, where the index of the first stage of the
tree is the speech recognition estimate of the phone state.

4.1. MELP Parameter Vector Quantization

To fully exploit the relationships between MELP parameters
within a frame, we quantize them jointly in one supervector.
This 12-dimensional vector consists of 10 Line Spectral Fre-
quencies (LSF’s), the frame gain in dB, and the voicing cutoff
frequency. Since these parameters have different units, we use
a weighted Euclidean distance for quantization composed as
follows. First, the LSF’s are weighted as in [7]. Then, low-bit
rate quantizers are designed for the LSF’s, gain, and cutoff
frequency. Finally, a composite weighting function is gener-
ated by weighting each of these parameters by the inverse of
its individual codebook quantization errors.

To exploit the correlation between MELP parameters over
successive time frames, we use first-order predictive vector
quantization. It is well known that this approach can pro-
vide significant performance improvement by quantizing the
difference between the current input vector and a predictive
estimate from the previous quantized vector. Since our 10 ms
MELP analysis frames are significantly overlapping, there is
strong redundancy between frames resulting in a high predic-
tion gain. In some ways this approach is similar to oversam-
pled differential waveform coders such as CVSD.

4.2. Joint Predictive Vector Quantization

To maximize the flexibility of our predictive VQ system, we
use a structure that we call Joint Predictive Vector Quanti-
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C1
C2
C3

P1 C4
C5
C6
C7
C8

Table 2. Predictive VQ.

C1
P1 C2

C3
C4

C1
P2 C2

C3
C4

Table 3. Switched Predictive VQ, one codebook.

zation (JPVQ). This is essentially an application of the tech-
nique originally proposed for image coding in [8] to the prob-
lem of speech spectral quantization. To illustrate this ap-
proach, we discuss the predictor and codebook structure of
a number of common predictive VQ methods, each requiring
three bits per vector. First, Table 2 shows that a predictive VQ
system has one predictor and eight codevectors. For speech
coding, it can be very helpful to have strong and weak pre-
dictors for steady-state and transitional regions, respectively.
Therefore, a conventional switched predictive VQ uses two
predictors, each sharing a 4-level codebook, as in Table 3.
The method presented in [9], illustrated in Table 4, uses dif-
ferent codebooks for each predictor to allow better codebook
design at the same bit rate, at the price of additional stor-
age. Moving past the switched predictive approach, we can
use a separate predictor for each codevector, as shown in Ta-
ble 5. In this Joint Predictive VQ method, each codeword
represents a predictor/codevector pair, so that prediction and
quantization are jointly optimized. Note that all the previ-
ous cases of predictive VQ can be viewed as constrained spe-
cial cases of JPVQ, where the predictor is “pooled” across
multiple codevectors. While this reduces codebook storage
and search complexity somewhat, it also reduces quantiza-
tion performance by limiting the available range of predic-
tor/codevector pairs as compared to the full unconstrained
JPVQ.

4.3. Training Algorithm

We have found that a joint training optimization is essential
for the performance of JPVQ. Here we derive the formulas for
optimal predictor and codevector update using scalar notation
and unweighted Euclidean distance for simplicity. Since our
prediction and weighting matrices are diagonal, the extension
of the algorithm to the vector case with weighted distance is

C11
P1 C12

C13
C14

C21
P2 C22

C23
C24

Table 4. Switched Predictive VQ, two codebooks.

P1 C1

P2 C2

P3 C3

P4 C4

P5 C5

P6 C6

P7 C7

P8 C8

Table 5. Joint Predictive VQ.

straightforward.
We optimize the squared error over all i training vectors

in a given cluster, E =
∑

i(yi− ŷi)2, with each reconstructed
vector given by ŷi = ax̂i + c, where x̂i is the previous quan-
tized vector, a is the prediction coefficient for this cluster, and
c is the corresponding codevector. Taking the derivative of E,
we find that the optimal a given c is

aopt|c =
∑

i x̂iyi − c
∑

i x̂i∑
i x̂2

i

(1)

=
∑

i x̂i(yi − c)∑
i x̂2

i

. (2)

Similarly, the optimal codevector c given the current predictor
coefficient a is

copt|a =
∑

i

yi − a
∑

i

x̂i (3)

=
∑

i

(yi − ax̂i). (4)

An iterative sequential approach would be to alternate each
of these updates across iterations; however, we find it simple
and effective to update both at once with a stepsize µ = 0.5.
While either form of update equations can be used, imple-
mentation is simpler using Equations 2 and 4.

We note that a full joint design can be achieved in theory,
since we can combine the above two equations to get

copt =

∑
i yi −

∑
i x̂i

P
i x̂iyiP
i x̂2

i

1 − (
P

i x̂i)2P
i x̂2

i

.

This value for c can then be used to compute aopt in Equa-
tion 1. However, this training algorithm is more complex than
the one mentioned previously, which we have found to con-
verge quickly and reliably in our application.
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Coder Bit Rate Predicted MOS

mean-only PV 300 2.01
predictive PV 300 2.23
4-bit SPV 700 2.80
8-bit SPV 1100 3.04
LPC10e 2400 2.64
MELPe 1200 2.89
MELP 2400 3.06

Table 6. Estimated bit rate and predicted MOS scores for
phonetic vocoder variations and reference coders.

5. PERFORMANCE

We have evaluated multiple versions of this Scalable Phonetic
Vocoder, along with the reference coders LPC-10e, MELP,
and MELPe, using informal listening on files from the TIMIT
test partition (not used in training). We tested the following
SPV variations:

1. The baseline phonetic vocoder using mean MELP pa-
rameters for each phone state. Pitch and state informa-
tion are unquantized; estimated total bit rate is 300 bps.

2. System (1) using mean and prediction coefficients.

3. System (2) with additional 4-bit/frame JPVQ (700 bps).

4. System (2) with additional 8-bit/frame JPVQ (1100 bps).

From this listening we have reached a number of con-
clusions. First, a speaker-independent phonetic vocoder can
provide modest intelligibility, quality, and speaker recogniz-
ability (from prosody only). Second, the modelling of time
evolution by predictive estimation provides smoother, higher-
quality output speech. Finally, even very small (16 level)
parameter codebooks provide significant improvement in all
three areas. We find this improvement remarkable given that
only four bits per frame are encoding a 12-dimensional pa-
rameter vector.

We also generated the predicted MOS score, shown in Ta-
ble 6, for each system over 96 files using the ITU PESQ ob-
jective measure. While this measure is not calibrated for low
rate vocoders, these results are consistent with our informal
quality assessments.

6. CONCLUSION

We have developed the framework for a Scalable Phonetic
Vocoder with bit rates from 300 - 1100 bps. We showed
the benefit of using predictive time evolution to allow the
MELP synthesizer parameters to move smoothly from phone
to phone, and extended this approach with Joint Predictive
Vector Quantization of the MELP parameters. Based on these
initial encouraging results, we plan to develop and test a fully-
quantized SPV, and then extend it using non-acoustic sensor
information to increase robustness in noise [10].
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