
HIGH-RATE DESIGN OF TRANSFORM CODERS WITH GAUSSIAN MIXTURE
COMPANDERS

Ethan R. Duni and Bhaskar D. Rao

Department of Electrical and Computer Engineering
University of California, San Diego

La Jolla, CA 92093-0407
Email: {eduni,brao}@ucsd.edu

ABSTRACT

This paper examines the problem of designing fixed-rate transform
coders for sources with arbitrary distributions, under input-weighted
squared error distortion measures. As a component of this system,
a flexible scalar compander using Gaussian Mixtures is proposed.
An algorithm is developed to set the parameters of the system us-
ing a data-driven technique that automatically balances the source
statistics, distortion measure, and structure of the transform coder
to minimize the high-rate distortion. The implementation of Gaus-
sian Mixture companders is explored, resulting in a flexible, low-
complexity scalar quantizer. The operation of this system for the
problem of wideband speech spectrum quantization with Log Spec-
tral Distortion is illustrated, and shown to provide good performance
with very low, rate-independent complexity.

1. INTRODUCTION

Transform coding is a popular method for quantizing vectors of data
using only scalar quantizers. Figure 1 illustrates the structure of a
transform coder using companding scalar quantizers. As a result of
this structure, transform coders have a number of desirable proper-
ties, such as small storage requirements and very low coding com-
plexity. The price for these features is inferior performance as com-
pared to more flexible quantizers.
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hd(ẑd)

ŷ1
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Fig. 1. Transform coder with compandering scalar quantizers

Many approaches to transform coding depend on fixing the trans-
form in some way, often by assuming the source is Gaussian (see
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[1],[2]). In other cases, only certain convenient transforms are con-
sidered: an example would be the DCT in image coding [3]. This
paper considers a more general problem in which the distribution is
unknown. Additionally, this paper considers more general distor-
tion measures, such as Log Spectral Distortion. To accommodate
these concerns, an algorithm is developed to set the parameters of
the system using a data-driven design technique that automatically
balances the source statistics, distortion measure, and structure of
the transform coder to achieve minimal high rate distortion. To al-
low for unknown data statistics, a flexible compander system using
Gaussian Mixtures is proposed.

The problem of designing a transform coder for minimum dis-
tortion from a database has also been considered by Archer and Leen
in [4]. This paper focuses on fixed-rate systems and considers a more
general distortion measure, whereas [4] covers the variable-rate case
with MSE distortion. Also, this training method is rate-independent,
which allows operation at arbitrary rates with no additional storage
or training requirements. Another similar work is [3], which consid-
ers the variable-rate transform coding of images and uses Gaussian
mixtures to model the marginal source densities. In that work, the
transform is considered as fixed and only the problem of learning the
component scalar quantizers is addressed.

To illustrate the performance of the proposed system, this pa-
per will focus on the example of wideband speech LSF quantization,
with the Log Spectral Distortion measure. An LSF quantization sys-
tem is said to achieve transparent quality when its average LSD is
no more than 1dB, produces outliers between 2-4dB less than 1%
of the time and produces a negligible amount of larger outliers. In
[5], Gosset lattices are utilized for wideband speech LSF quantiza-
tion, attaining transparent quality at around 45 bits per frame. In [6],
MSVQ is employed and results in transparent quality at around 56
bits per frame. In [7], a Gaussian Mixture Model based VQ sys-
tem is shown to achieve transparent quality at 48 bits per frame.
All of these works consider only memoryless systems. It is note-
worthy that essentially all authors have found that rates of at least 45
bits per vector are required for high quality memoryless quantization
of wideband LSF vectors. For such large codebooks, the transform
coder offers extremely low complexity, as one need only store the
system parameters. Furthermore, if the scalar quantizers are imple-
mented with companders, the encoding complexity becomes rate-
independent. Although these features prevent the transform coder
from performing as well as the best schemes, it is still able to im-
prove upon the performance of MSVQ. Thus, the transform coder is
attractive in scenarios where very low complexity is required, and so
a framework is developed for achieving the best possible high rate
performance.
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2. BACKGROUND

Consider a source X ∈ R
d, with density f(x). This paper will

restrict attention to input-weighted distortion measures of the form

d(x1, x2) = (x1 − x2)
T
S(x1)(x1 − x2) (1)

were S(x) is a symmetric, positive-definite matrix, called the
sensitivity matrix. Analysis of fixed-rate quantization under input-
weighted distortion measures can be found in [8]. A wide variety
of distortion measures, including Log Spectral Distortion, can be
accurately approximated at high rates in this fashion. Calculation of
the sensitivity matrix for LSD on LSF vectors is detailed in [8].

This paper will restrict attention to the high-rate case, where the
distortion of an r-bit quantizer can be approximated as an integral,
as in [1]. In the transform coder, all cells are hyperrectangles. Due
to its structure, the transform coder suffers from space-filling loss,
oblongitis, and a limited ability to exploit dependence between the
elements of X (see [9] for a detailed explanation). The high-rate
approximation for a transform coder under MSE is given in [1]. Let
λθi

(yi) be the point densities of the scalar quantizers, and Ki the
numbers of levels assigned to each of them. For an r-bit quantizer,
Ki is parameterized in terms of the new variables βi as follows:

Ki = 2r/d
βi

(
d∏

j=1

βj

)−1/d

Here, βi > 0, insuring that Ki > 0. The form of this parametriza-
tion insures that

∏d
i=1 Ki = 2r . For training purposes, the con-

straint that the Ki’s must be integers is ignored. Instead, a pruning
algorithm is applied to meet the constraint when implementing the
coder. The high-rate distortion of an r-bit transform coder is [11]:

Dθ
∼= 2−2r/d 1

12

(
d∏

j=1

βj

)2/d d∑
i=1

β
−2
i E

(
||ti||

2
S(X)λ

−2
θi

(tTi X)
)
(2)

where ti is the i-th column of T .

2.1. Point Densities

Next, a specific parametric form for the compander point densities
is required. This paper proposes a flexible class of point densities
which are Gaussian Mixtures:

λθi
(yi) =

M∑
m=1

αimN(yi|µim, σ
2
im)

This class of point densities can, as M grows large, approximate
a wide variety of densities. Even for low values of M , mixtures
are able to model features such as multimodality and skew. Thus,
the system parameters are θ = {T, β, α, µ, σ2} with the constraints
T TT = I , βi > 0,

∑M
m=1 αim = 1 and σ2

im > 0. The remainder
of this paper will use the notation Nim(yi) = N(yi|µim, σ2

im).

3. DATA-DRIVEN TRANSFORM CODER DESIGN

The classic approach to designing transform coders is to assume the
source is Gaussian. Then, the parameter settings that minimize the
high rate distortion can be derived (see [1]). Specifically, T is the
KLT, βi is the square root of i-th eigenvalue of the source covari-
ance, and λi(yi) is a Gaussian with variance three times the i-th

eigenvalue. As discussed in [10], however, this design can be very
poor if the source is not actually Gaussian, and so this paper pro-
poses a numerical technique for designing the system. In practice,
one has no knowledge of the distribution except for a set of samples
x1, . . . , xN , drawn i.i.d. from f(x). Then, the expectations in Eq.
(2) are replaced by averages, and the design problem is:

min
θ∈Θ

(
d∏

j=1

βj

)2/d d∑
i=1

β
−2
i

N∑
n=1

||ti||
2
S(xn)

(
M∑

m=1

αimNim(tTi xn)

)−2

(3)

This design procedure is intended to be carried out off-line, and
so its complexity does not come to bear on the operation of the re-
sulting transform coder. Also, while successive LSF frames are actu-
ally correlated, this dependence is ignored here, as all of the systems
under consideration are memoryless.

It is difficult to optimize Eq. (3) over all parts of θ simultane-
ously. As such, an iterative algorithm that alternatingly optimizes
over subsets of parameters while holding the others fixed is used.
Specifically, each iteration first optimizes over the transform, then
over the point density parameters, and then over the level allocations.
Full details of this scheme can be found in [11], and are summarized
here with an emphasis on the point density optimization step, which
is the most novel part. To optimize the transform, this work utilizes
the steepest descent approach proposed by Manton in [12]. Notably,
it requires only the evaluation of the derivative of Eq. (3) with re-
spect to T , and uses an SVD to enforce the orthogonality constraint.
A linesearch approach is used to ensure convergence. The point den-
sity parameters are optimized with an extension of the EM algorithm,
which is detailed in Section 3.1. Finally, the level allocation problem
can be solved by taking the logarithm of Eq. (3), taking its derivative
with respect to βi and setting it to zero, giving:

β−2
i ci∑d

j=1 β−2
j cj

=
1

d

In other words, one should choose the βi’s such that β−2
1 c1 =

β−2
2 c2 = . . . = β−2

d cd. This can be easily accomplished by setting

β1 = 1 and then applying the equation βi =
√

ci

c1
, ∀i ≥ 2.

To initialize the algorithm, one needs an initial guess of the
transform. Two obvious choices are the KLT and identity matri-
ces, which will always be included in this work. Given an initial
transform, the K-means algorithm is applied to each dimension of
the transformed data to initialize the point densities. The level al-
location are then initialized as above. Further, it is often useful to
perform the training in a hierarchical manner. That is, first perform
the training for M = 1, which has much less sensitivity to local
minima, then utilize the resulting transform to initialize for M = 2,
and so on with the higher orders.

3.1. Point Density Optimization

Notice that the overall objective function, Eq. (3), is a sum over func-
tions of the different scalar quantizers, and so they may be optimized
independently. For the i-th quantizer, the optimization problem is:

min
θi

N∑
n=1

||ti||
2
S(xn)

(
M∑

m=1

αimNim(tTi xn)

)−2

(4)

Such a problem can be approached with an extension of the EM
algorithm. Where conventional EM applies Jensen’s inequality to a
logarithm to construct a bound on the objective function (see [13]),
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the same can be done with the power function (·)−2, resulting in the
following problem:

min
θi

N∑
n=1

||ti||
2
S(xn)

M∑
m=1

r
3
mn

(
αimNim(tTi xn)

)
−2

(5)

Eq. (5) is an upper bound on Eq. (4). The setting of rmn is the
same as in conventional EM:

rmn =
αimNim(tTi xn)∑M

m=1 αimNim(tTi xn)
(6)

Thus, one may construct an iterative optimization procedure for
θi by starting with some initial guess θ0

i and then alternating between
an E-step (Eq. (6)) and an M-step that optimizes the resulting bound.
Optimization of Eq. (5) over the mixture weights is accomplished by
the standard Lagrange multiplier approach, giving:

αim ∝

(
σ

2
im

N∑
n=1

||ti||
2
S(xn)r

3
mne

σ−2

im
(xn−µm)2

)1/3

(7)

Optimization of the means and variances of each component is
not possible in closed form. In practice, Newton’s method works fine
on both problems, provided a reasonable initializer is used. Com-
plete details of the Newton steps for the means and variances can be
found in [11]. A simple linesearch scheme is used to ensure that the
resulting variance estimates are positive.

4. IMPLEMENTATION OF GMM TRANSFORM CODER

This section discusses the implementation of a transform coder with
GMM point densities. To operate such a system, one first must com-
pute the level allocation for the desired rate. A pruning algorithm is
used to make the resulting total number of codepoints as close to 2r

as possible without exceeding it, as described in [11].
The other implementation issue is the evaluation of the compan-

der functions g(yi) and h(zi) = g−1(zi). For the case of a Gaus-
sian Mixture density, the compressor function is easy to evaluate:
g(yi) =

∑M
m=1 αimΦim(yi), where Φim(yi) denotes the cdf of

the im-th Gaussian. This expression is easy to evaluate numerically,
requiring only routines for computing the error function. However,
the expander function is difficult to evaluate, since one cannot inter-
change the inverse with the summation.

To get around the difficulty with the expander function, New-
ton’s root-finding method can be used to compute h(zi). This pro-
cedure begins with an initial guess y0

i and then performs a number
of iterations to improve this estimate. As is well known, Newton’s
method provides quadratic convergence if one supplies a suitable
initializer. Thus, a simple method for selecting a good initializer for
any possible value of zi is needed. This can be accomplished by
partitioning g(yi) into concave and convex regions, and assigning
a different initializer depending on which region zi falls into. The
method of partitioning is shown in Figure 2. The Newton iteration
for this problem is:

y
k+1
i = y

k
i −

∑M
m=1 αimΦim(yk

i ) − zi∑M
m=1 αimNim(yk

i )
(8)

For speech signals, it has been observed that ten iterations of
this algorithm are sufficient to result in an average decoding error
on the order of 10−32, with a maximum decoding error on the order
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Fig. 2. Illustration of the expander initialization scheme, showing
(a) GM CDF and (b) its second derivative. Given some z ∈ [0, 1] to
decode, the initializer is formed by finding the partition that contains
z (the dashed lines) and using the inflection point y within that region
(the dotted lines).

of 10−31. This is sufficient accuracy for rates up to approximately
30 bits per dimension, which is extremely high. For more moderate
rates, five or so iterations are sufficient.

5. PRACTICAL RESULTS

The problem of wideband speech spectrum coding, under the Log
Spectral Distortion measure, is considered. It should be noted that,
for the high-rate analysis, LSD is measured in dB2 in order to corre-
spond to input-weighted squared error, and so high-rate approxima-
tions use this metric (Figure 3, specifically). However, when calcu-
lating operating point and outlier statistics (as in Table 1), the more
conventional approach of measuring in dB is used. A training set of
300,000 wideband speech LSF vectors of order 16 was gathered, and
the LSD-sensitivity matrix was evaluated for each vector. For testing
purposes, an independent database of 65,000 LSF vectors was em-
ployed. First, a transform coder was designed using single Gaussian
scalar quantizers. To initialize the parameters, the data was assumed
to be Gaussian and so the sample mean and covariance were used to
set the parameters to be optimal under for Gaussian, MSE assump-
tion. The data-driven transform coder design algorithm described in
Section 3 was then used to optimize over the actual statistics and dis-
tortion measure. After trying a variety of other initializers (T = I ,
and many random transforms), it was determined that this result was
indeed the best possible.

The performance before and after optimization, both actual and
predicted, is seen in Figure 3. Notice that, at high rates, optimization
resulted in a large savings of around 8 bits per dimension (128 bits
per frame). However, these results are only valid at very high rates,
above 20 bits per dimension. At very low rates, the non-optimized
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Fig. 4. Histograms and point densities for transform coefficients.
Histograms in solid lines, corresponding optimal point densities in
dashed lines and actual point densities in dotted lines.

system performs slightly better, as the optimized system has changed
µim to compensate for skew. While the average performance of the
systems around the operating point are similar, the optimized system
produces far fewer outliers.

Next, the number of Gaussians used in each scalar quantizer was
increased. No significant changes in the high rate distortion were
observed for M > 2, and so a mixture of 2 Gaussians are used for
each compander. This resulted in a reduction in high-rate distortion
of 10% over the M = 1 case. The performance of this system, in-
cluding outlier statistics, is listed in Table 1, where it is compared
to the initial, Gaussian-assumption design. The average distortion of
each system is roughly the same at rates of interest. However, the
outlier statistics have been greatly improved by utilizing GM com-
panders and high-rate optimization. The point densities of two of the

bits/frame
Avg. LSD Outliers (in %)

(in dB) 2-4 dB > 4 dB

53
1.1094 1.3417 0.0046
1.0589 1.3509 0.0031

54
1.0175 0.8133 0.0031
1.0197 1.1045 0.0046

55
0.9804 0.6501 0.0046
0.9808 0.8426 0.0046

56
0.9419 0.5376 0.0046
0.9645 0.7969 0.0031

Table 1. Performance Around 1dB LSD Operating Point. For each
rate, the upper row corresponds to an optimized coder with M = 2,
and the lower to a system designed under the Gaussian assumption.

optimized companders are seen in Figure 4, along with histograms
of the transform coefficients. The GM compander is able to account
for multimodality and skew, and so closely approximates the optimal
point densities. Overall, the system outperforms MSVQ by 1-2 bits
per frame, with very low, rate independent complexity. While more
complex systems offer better performance, transform coding is an
attractive option when very low complexity is desired.
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