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ABSTRACT 

This paper addresses the problem of speaker segmentation in 
telephone conversation. The segmentation is done in three steps: 1) 
preliminary segmentation to hypothesize speaker turning points;    
2) clustering of segments; and 3) re-segmentation to determine 
speaker identity of each segment. It is found that vocal source 
related features are more speaker-discriminative than the 
conventional vocal tract related features for small amount of data. 
This motivates us to thoughtfully incorporate vocal source features 
into early stages of the speaker segmentation process, where 
decisions have to be made with limited data. Speaker segmentation 
experiments are carried out on 36 summed channel conversations 
in the NIST 2004 Speaker Recognition Evaluation. The proposed 
use of vocal source features leads to noticeable performance 
improvement.

1. INTRODUCTION 

Speaker segmentation is a task of dividing an input speech signal 
into homogenous regions, each of which contains the speech of 
exactly one speaker. One of the applications is audio indexing and 
searching [1]. For example, the audio recording of a meeting or a 
conversation can be indexed automatically to facilitate the search 
and retrieval of the content spoken by a specific person. Speaker 
segmentation techniques are also very useful for automatic labeling 
and transcription of audio archives that involve multiple speakers 
[2,3,4]. In this application, the audio signal typically contains 
speech from different speakers under different acoustic conditions. 
With the knowledge of “who is speaking”, acoustic models for 
speech recognition can be adapted to better match the conditions 
and the speakers. In the speech-to-text conversion process, 
information about speaker turns can be used to avoid linguistic 
discontinuity [4].  

There are two basic problems to be addressed in automatic 
speaker segmentation. First, speaker turning points, i.e. the time 
instants when there are changes of speakers, need to be determined. 
Second, the speech segments separated by the turning points are 
associated with different speakers. In a typical application of 
speaker segmentation, speaker models can not be built in advance 
because the speaker identities are unknown and no speech data is 
available for training [1]. Therefore, a segment clustering process 
is required to aggregate similar segments, which are supposed to be 
from the same speaker.  

Speaker turning point detection and segment clustering can be 
done sequentially in one pass [3,5] or iteratively in multiple passes 
[2,6,7]. Turning points are hypothesized based on local change of 
acoustic properties. The hypothesized turning points divide the 
speech signal into many segments. These segments are clustered 
into a certain number of speaker-homogenous groups. Statistical 
modeling techniques are commonly used for both turning point 

detection and segment clustering. The effectiveness of statistical 
modeling depends greatly on the amount of available training data. 
In the task of speaker segmentation, data is usually limited. In this 
paper, we consider two-speaker telephone conversations in which 
the duration of speech are short (1 to 3 seconds). This makes 
statistical modeling difficult. 

In previous research on speaker segmentation, the most 
commonly used acoustic features are cepstral coefficients 
computed by filter-bank or linear prediction analysis [1,2,3,5,6,7]. 
These features describe mainly vocal tract related information and 
provide useful acoustic cues for phonetic classification i.e. speech 
recognition. In other words, they contain a great deal of content-
specific information. For telephone conversation, each speaker 
speaks for a short period of time, typically. When determining the 
speaker turning points, a short window of speech is searched [1]. 
Within this window, the linguistic content is very limited. A 
statistical distribution computed from vocal tract features of such a 
short window tends to be biased by the specific linguistic content 
and thus be less effective in characterizing the speaker’s voice.  On 
the other hand, vocal source excitation signal carries useful 
speaker-specific information, e.g. pitch, types of glottal pulses, 
degree of breathy or creaky voice [8]. Compared with vocal tract 
features, vocal source features are less volatile to the variation of 
phonetic content. They are expected to be more appropriate for 
speaker discrimination when there is little speech data. 

It is not a trivial task to extract useful vocal source features 
from acoustic signals. Linear prediction (LP) residual signal is 
considered as a useful manifestation of vocal source excitation, 
which can be computed efficiently [8]. Our previous work 
proposed to apply pitch-synchronous wavelet transform to LP 
residual signal. The resulted features, named Wavelet Octave 
Coefficients of Residues (WOCOR), are found to provide 
complementary discrimination power to the conventional vocal 
tract features [9]. 

In this paper, it is shown that WOCOR is more speaker-
discriminative than the conventional Mel-frequency cepstral 
coefficients (MFCC) for short speech segments. We propose to use 
WOCOR as the primary acoustic features for speaker turning point 
detection. This leads to a significant improvement on the overall 
performance of speaker segmentation. 

2. BASELINE SYSTEM 

2.1. Speech Database 

We use part of the speech data provided for the NIST 2004
Speaker Recognition Evaluation. The data is for the task of speaker 
detection in summed-channel conversations. Each conversation 
involves two speakers talking over telephones. It was created by 
sample-by-sample addition of the two sides of conversations [10]. 
The speech was sampled at 8 kHz and encoded by 8-bit µ-law. The 
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duration of each conversation is approximately 5 minutes. No prior 
information about gender is provided. 

There are about 1,200 conversations defined for training and 
testing in the NIST evaluation. In this research, 36 randomly 
selected conversations are used. The two speakers in a 
conversation could be both male, both female, or one male with 
one female. The language being spoken is English,Mandarin and 
mixture of them. 

Each of the selected conversations was manually divided into 
speaker-homogeneous segments. The human annotator was 
allowed to visualize the waveform and listen to the audio signal 
back and forth before making decisions on turning point locations. 
The manual segmentation results are used as the reference for 
evaluation of the proposed speaker segmentation algorithms. A 
total of 1,857 speaker segments are marked in the 36 conversations. 
Excluding the silence and non-speech periods, the segment 
duration is mostly between 1 to 3 seconds.  

2.2. Automatic Speaker Segmentation 

Given one of the conversations, automatic speaker segmentation is 
performed in the following steps: 

Step 1 – preliminary segmentation [1,3,5] 
Step 2 – segment clustering [3,5] 
Step 3 – re-segmentation [6,7] 
These procedures are based on the methods previously 

proposed in [1,3,5,6,7]. But in our case, the number of speakers is 
known. The details of each step are described below.

2.2.1. Preliminary segmentation 
Preliminary segmentation is to find a set of hypothesized speaker 
turning points. This is done with the DISTBIC technique proposed 
by Delacourt [1], which involves sequential use of spectral 
distance measurement and Bayesian information criterion (BIC). 

When applying spectral distance measurement, we consider a 
2-second window of speech in each measurement. The window is 
divided into two equal parts and each of them is represented by a 
single Gaussian distribution [1]. Let f and g denote the two 
distributions respectively. The Kullback-Leibler distance (KLD) is 
computed as follows, 

1 1 1 11
( , ) {( )( )( ) 2 }

2

T

f g f g f g f g f f
KLD f g tr Iµ µ µ µ− − − −= Σ +Σ − − +Σ Σ +Σ Σ − (1) 

As the window slides over the speech signal, the KLD is 
computed as a function of time. The window shift is 100 ms. The 
peak values on the time-varying KLD curve suggest the presence 
of the speaker turning points. 

Subsequently, the turning points are refined using BIC value 
[1]. Let X={x1, …, xN} be the feature vector sequence from N 
successive frames of speech. In this study, N is set to 200 (2 
seconds). Consider the two sub-sequences X1={x1, …, xi} and 
X2={xi+1, …, xN}, where 1 < i < N. The following two hypotheses 
are defined [3]: 

H0  X is generated by a single Gaussian distribution 
detnoted by N(µ, ), where  µ and  are the mean and full 
covariance matrix respectively 
H1  X1 and X2 are generated by two distinct Gaussian 
distributions N(µ1, 1) and N(µ2, 2) respectively 

BIC value is given by the likelihood ratio of H0 and H1,
minus a penalty [3], i.e. 

1 1 2 2( ) log log logBIC i N N N Pλ∆ = Σ − Σ − Σ −       (2) 

The penalty term is used to balance the model complexity 
difference. It is defined as, 

1 1
( ( 1)) log

2 2
P d d d N= + +                          (3) 

where d is the dimension of feature vectors xi. The turning point is 
detected by 

arg max ( )
i

t BIC i= ∆                                  (4) 

If ( ) 0BIC i∆ ≤  for all i, no turning point is assumed for X. 

 controls the sensitivity of turning point detection [1,3]. In our 
case, a low miss rate is desired without seriously compromising the 
false alarm rate, because missed turning points are not recoverable 
afterwards. 

2.2.2. Segment clustering 
The speaker turning points found as described above divide the 
conversation into many segments, each of which is assumed to be 
speaker-homogeneous. These segments are merged using 
hierarchical clustering technique [3,5]. This is a bottom-up method. 
The distance between each possible pair of clusters is calculated as 
in Eq.(2). The closest pairs are merged to form a new cluster. 
Given that we are tackling a two-speaker task, the clustering 
process stops when there are only two clusters left. 

2.2.3. Re-segmentation 
A Gaussian mixture model with 32 mixture components is trained 
to represent each of the two clusters, which correspond to the two 
speakers. Viterbi re-segmentation of the conversation is performed 
using these models. It determines the most probable path that 
toggles between the two speaker states [6,7]. There is a constraint 
of minimum segment length of 0.5 seconds. Unlike what is 
suggested in [6,7], there is no further iteration of clustering and re-
segmentation. Only one pass of re-segmentation is performed to 
produce the final result of speaker segmentation. 

2.2.4. Performance measurement 

Turning point detection
A false alarm (FA) of turning point detection occurs when a 
detected turning point is not a true one. A missed detection (MD) 
occurs when a true turning point can not be detected. The false 
alarm rate and missed detection rate are defined as, 

100%i
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FAR

FA turn
= ×

+
, 100%i

i

MD
MDR

turn
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where iFA  and iMD are the total number of FA and MD 

respectively, iturn is the total number of true turning points 

given by the reference manual segmentation. The turning point 
detection rates can be evaluated either on the preliminary 
segmentation or on the re-segmentation result.

Speaker coverage
The segmentation performance can be assessed in terms of speaker 
coverage, i.e. 
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2.2.5. Baseline results 
The acoustic features used in the baseline system include 12
MFCCs and the log energy, which are computed with a Hamming 
window of 20 ms long with 10 ms frame shift. The baseline 
performance of speaker segmentation is shown as in Table 1. For 
preliminary segmentation, FAR increases when MDR decreases. 
The thresholds for KLD peak detection and the parameter  in 
Eq.(2) can be adjusted to reach a specific operating point. In our 
application, we wish to have the MDR as low as possible because 
the missed segment can not be recovered. In the following 
experiments, these parameters are empirically determined by trial 
tests with two selected conversations. The resulted parameter 
values are applied to all conversations. 

The GMM based re-segmentation is very effective in reducing 
both the false alarm rate and missed detection rate of turning point 
detection. It is found that about 45% of the segmentation errors are 
attributed to segments of 1 - 5 seconds in length. To deal with such 
short segments, the MFCC features may not be appropriate 
because they may be biased by specific linguistic content in the 
segment. In the following section, we show that vocal source 
excitation features are more discriminative for short speech 
segments. 

Table 1. Baseline performance of speaker segmentation 

FAR 70.7% 
Preliminary segmentation 

MDR 47.0% 
FAR 31.6% 

Turning 
point
detection 
accuracy Re-segmentation 

MDR 25.9% 
FACov 12.3% Speaker coverage (after re-

segmentation) MRCov 9.00% 

3. VOCAL SOURCE FEATURES: WOCOR 

It is believed that vocal source excitation features contain 
important speaker-specific information. The LP residual signal has 
been regarded as an effective carrier of vocal source information 
[8,9]. In our previous work [9], it was proposed to apply pitch-
synchronous wavelet transform to the LP residual signal to derive 
a set of vocal source features, named WOCOR, for speaker 
recognition. Only voiced frames are used to derive WOCOR. It 
was shown that WOCOR provides additional speaker 
discriminative power to the commonly used Linear Predictive 
Cepstral Coefficients (LPCC) [9]. 

3.1 Computation of WOCOR 
The residual signal is generated by linear predictive inverse 
filtering and pitch epochs are identified for synchronization. Then, 
3-level discrete wavelet transform (DWT) is applied to every two 
successive pitch cycles of the residual signal, resulting in three 
groups of detail coefficients and one group of approximation 
coefficients. Each group of coefficients represents a specific 
spectral component. Each group is further divided into four sub-
groups and the overall energy of each sub-group is computed as a 
feature component. The entire WOCOR feature vector contains 16
components. By multi-level DWT, the pitch-related low-frequency 
properties and high-frequency information associated with pitch 
epochs are captured with different resolutions of time-frequency 
analysis. Dividing each group into sub-groups enables the 
characterization of temporal variation of the spectral components 
within a pitch period and that over consecutive periods. Therefore, 

WOCOR is capable of capturing the spectro-temporal 
characteristics of the LP residual signal [9]. 

3.2. Discrimination power of WOCOR against MFCC 
The discrimination power of WOCOR is analyzed in comparison 
with the conventional MFCC. We are interested to know whether 
WOCOR would be a more effective feature for speaker 
discrimination when the number of speech samples is small. This 
simulates the difficulty of working with insufficient data for 
speaker turning point detection. 

Let ijS  denote the jth segment of speaker i (i = 1 or 2) in a 

given conversation. The reference manual segmentation is used 
here. We attempt to build a speaker model based on M randomly 
selected feature vectors from this segment. Let these selected 
feature vectors be denoted by ijF . The features are either MFCC or 

WOCOR. By varying M, the amount of data for statistical 
modeling can be controlled and tested. 

Without loss of generality, we first consider speaker 1 to be the 
target speaker and speaker 2 be the imposter, and perform a 
speaker verification test.  For the segment 1 jS , the target model for 

speaker 1, denoted by 1G , is trained by 1 jF  and the anti-model, 

denoted by 2G , is trained by 2kF , which is extracted from a 

randomly selected segment 2kS  of speaker 2. 

All segments from speaker 1 except 1 jS  are used for the test.  

For each feature vector, the likelihoods produced by 1G  and 2G
are computed. The overall likelihood of a segment is the average 
likelihood of all feature vectors in the segment.  

Let 1 1( | )pp F G  and 1 2( | )pp F G  be the segment-level 

likelihoods for 1pS  where p ≠ j. The likelihood ratio is computed 

as, 

1p 1 1 1 2LR log ( | ) log ( | )p pp F G p F G= −                  (5) 

If 1pLR > 0, we consider that this is a correct decision of 

speaker verification. 
The same testing procedures are repeated for all segments of 

the two speakers. Suppose that there are L segments from a speaker, 
a total of L×(L-1)/2 tests can be performed for the speaker. A large 
number of tests are carried out for the 36 conversations and a 
statistical error rate is obtained. 

The performance of MFCC and WOCOR are evaluated with 
different values of M, i.e. the number of feature samples used to 
represent a segment. If there are less than M feature samples in a 
segment, the segment is not used for testing.  

Figure 1 shows the performance of WOCOR and MFCC, with 
M varying from 50 to 200, which are equivalent to speech duration 
of 0.5 to 2 seconds. WOCOR performs better than MFCC when 
the number of feature samples is small, i.e. M < 110 (or 1.1 
seconds). With the amount of data increasing, MFCC begins to 
overtake WOCOR. When M is greater than 170, MFCC becomes 
obviously better than WOCOR. 

It is noted that, for some of the male-female conversations, 
WOCOR works better than MFCC for segment length as long as 2 
seconds (M=200). However, for female-female conversations, the 
effectiveness of WOCOR is not noticeable unless M becomes very 
small, i.e. M < 90. For most male-male conversations, the MFCC 
overtakes WOCOR around 90 and the error rate is high.  
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WOCOR contains pitch-related information and therefore is 
good at distinguishing speakers of opposite genders. This may 
explain the superiority of WOCOR in male-female conversation. 
For speakers of the same gender, pitch information becomes less 
discriminative. For female speakers, pitch periods are relatively 
short and pitch extraction becomes less accurate. This affects the 
pitch synchronization and makes WOCOR less reliable. 

Fig.1. Speaker classification performance attained by WOCOR and 
MFCC with different number of feature samples 

4. USE OF WOCOR IN SPEAKER SEGMENTATION 

WOCOR is more effective than MFCC for speaker discrimination 
with relatively small amount of data. MFCC outperforms WOCOR 
if the feature samples are abundant. For speaker turning point 
detection, we replace MFCC by WOCOR in the computation of 
both KLD and BIC. For segment clustering, if the total amount of 
data in a cluster is equivalent to 2 seconds of speech or shorter, a 
linear score fusion of MFCC and WOCOR is adopted for the BIC 
clustering, i.e. 

( ) ( )fused MFCC MFCC WOCOR WOCORBIC w BIC w BIC∆ = ∆ + ∆   (6) 

where wMFCC=0.3 and wWOCOR=0.7 are determined empirically. If 
the cluster contains more than 2 seconds of speech, the clustering 
decision depends solely on MFCC. 

The experimental results are shown as in Table 2. Similar to 
the baseline experiments, the thresholds for KLD peak detection 
and the parameter  in Eq.(2) are empirically determined by trial 
tests with two selected conversations. The same parameter values 
are applied to all conversations. 

Table 2. Speaker segmentation performance with WOCOR used in 
speaker turning point detection. ( ) gives the baseline performance 

FAR 73.9% (70.7%) Preliminary 
segmentation MDR 21.1% (47.0%) 

FAR 27.3% (31.6%) 

Turning 
point
detection 
accuracy Re-segmentation 

MDR 20.7% (25.9%) 
FACov 9.94% (12.3%) Speaker coverage 

(after re-segmentation) MRCov 7.33% (9.00%) 

For preliminary segmentation (turning point detection), the use 
of WOCOR leads to a 25.9% absolute reduction of the missed 
detection rate (MDR) while the false alarm rate (FAR) increases 
slightly by 3.2%. This verifies our earlier observation that 

WOCOR is more effective than MFCC for discriminating speakers 
with relatively small amount of data. 

After re-segmentation, FACov improves from the baseline 
performance of 12.3% to 9.9%; MRCov also drops from 9.0% to 
7.3%. Although the preliminary segmentation performance is much 
improved by the proposed use of WOCOR, the subsequent 
segment clustering and GMM based re-segmentation rely also on 
MFCC. Moreover, the amount of data used in segment clustering 
and re-segmentation is relatively large. The advantage of WOCOR 
becomes less noticeable in this case.  

5. CONCLUSIONS 

The major finding of this paper is that vocal source related features, 
namely WOCOR, are more speaker-discriminative than the 
conventional MFCC features for small amount of data. This has 
motivated us to thoughtfully incorporate vocal source features into 
early stages of the speaker segmentation process, where decisions 
have to be made with limited data. The effectiveness of our 
proposed way of using vocal source features is confirmed 
favorably by a noticeable performance improvement on speaker 
segmentation.
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