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ABSTRACT

State-of-the-art speaker verification systems are built around the like-
lihood ratio test, using Gaussian Mixture Models (GMM) for likeli-
hood functions, a universal background model (UBM) for alternative
speaker representation, and a form of Bayesian adaptation to derive
speaker models from the UBM. This work tackles optimal quantizer
design of the speech cepstral features (MFCCs) for such systems.
The problem is posed as the minimization of loss of log-likelihood
ratio between the quantized and unquantized speech features. First
we show that the conventional mean squared error (MSE) quantizer
for the top-scoring UBM Gaussian is optimal under practical as-
sumptions. Then we derive the optimal bit allocation strategy across
the dimensions of the feature vectors. Finally we demonstrate the va-
lidity of the approach against various quantization and bit allocation
schemes by running experiments on the appropriately modified IBM
Speaker Verification system. Experimental results on the HUB4 cor-
pora show negligible impact on verification performance for bit rates
as low as less than 1 bit per dimension on average in contrast to 32
bits per dimension in the original system.

1. INTRODUCTION

With the growing prevalence of mobile devices, users are starting to
expect a full range of computational as well as communication ser-
vices from these devices. Furthermore, given that these devices are
used in a wide variety of environments, by users with differing ac-
cess and operational requirements, the need for non-keyboard based
(hands-free) interfaces is becoming increasingly apparent. Recent
advances have significantly improved the robustness and accuracy
of speech recognition technology, making speech-based interfaces
for human-computer (mobile device) interaction viable. Speech may
also be used in order to enable secure access to the mobile device,
through the use of voice authentication and speaker verification. Un-
fortunately, advanced speech recognition and speaker verification al-
gorithms, especially for large vocabulary systems, under noisy envi-
ronments, are computationally expensive, and cannot be easily im-
plemented on these mobile handsets. There is hence a need for dis-
tributed processing, where the computation is shared between the
device and the network infrastructure to provide these capabilities.
Such a distributed processing approach can also allow for added lev-
els of security, by limiting amount of valuable information (such as
speaker models) stored on the actual mobile device. Among cur-
rent distributed speech recognition (DSR) applications, the ETSI
Aurora [1] is widely referenced as the standard over the mobile cel-
lular network. The mobile device performs the relevant feature pa-
rameter extraction and compression, as well as bit-stream framing,
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formatting and decoding, and additional error protection and mitiga-
tion. It then transmits these processed features over a data channel
to a remote back-end system, which further processes the received
features and performs the speech recognition. The features extracted
by the ETSI DSR application include 13 Mel-frequency cepstral co-
efficients (MFCC) as well as the logarithmic energy, extracted from
each frame of the speech signal. The feature vector is compressed
using Split Vector Quantization (SVQ). During this process the fea-
tures are grouped into pairs, and each pair is quantized using its own
codebook. It has been shown that accurate speech recognition per-
formance can be achieved with a fairly low data rate of 4,800 bps
for the quantized features. In this paper we focus on compression
(using quantization) of speech data for a Distributed Speaker Veri-
fication (DSV) application that is based on adapted Gaussian Mix-
ture Models (GMMs) for speakers. In particular, we design optimal
quantization schemes, for the MFCC feature vectors, to minimize the
loss in speaker verification accuracy. We rely on generative models
and tailor our quantization towards minimizing a distortion metric
(based on the log-likelihood ratio) specific to the speaker verification
algorithm used. Using our analysis we show that the quantizer that
minimizes the squared loss in log-likelihood ratio, may be mapped
to a conventional weighted Mean Squared Error (MSE) quantizer
for both a single-speaker as well as a multi-speaker verification task.
Furthermore, we also investigate variable bit allocation across the
different dimensions of the feature vector, and derive analytically
the number of bits per feature dimension. Finally, we evaluate the
designed quantization and bit allocation schemes on the HUB4 cor-
pora, and show significant improvements in the achievable compres-
sion with negligible impact on the accuracy of the speaker verifica-
tion. This paper is organized as follows. We describe the state of
the art in speaker verification using GMMs in Section 2. We then
describe the design of our Minimum Log-Likelihood Ratio Differ-
ence (MLLDR) quantizer in Section 3. We investigate bit allocation
schemes in Section 4. We describe the system design in Section 5
and present experimental results in Section 6. Finally, we present
our conclusions in Section 7.

2. SPEAKER VERIFICATION USING ADAPTED
GAUSSIAN MIXTURE MODELS

Top-performing speaker verification systems are built around the
likelihood ratio test, using diagonal-covariance Gaussian Mixture
Models (GMM) for likelihood functions, a universal background
model (UBM) for alternative speaker representation, and a form of
Bayesian adaptation to derive speaker models from the UBM [2].
The UBM model represents the background population and is trained
with data from a large number of speakers so as to create a model
without idiosyncratic characteristics. The mean vectors of the speaker
models are derived via MAP adaptation from the UBM parameters
based on speaker-specific training data, whereas the mixture weights
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Fig. 1. Original speaker verification system [3]: Block diagram.

and diagonal covariance matrices are identical to the UBM’s.
We briefly review the key features of a state-of-the-art speaker

verification system [3]. The core components are illustrated by Fig-
ure 1. Mel-frequency cepstral coefficients (MFCC) are extracted
and pre-processed from input speech frames. Let X = {xj

i} with
i = 1, 2, . . . , N and j = 1, 2, . . . , D denote a sequence of such
N mutually independent D-dimensional feature vectors. Those fea-
ture vectors feed the speaker verification unit. This unit is composed
of three main parts. First the top-scoring D-dimensional Gaussian
from the UBM Gaussian mixture λB is identified. That is, the most
likely UBM Gaussian given a feature element x

j
i is picked. Let gi,j

denote the index of this Gaussian. Then, given the feature element,
the log-likelihood ratio is computed between the most likely UBM
Gaussian and the corresponding Gaussian in the claimant speaker
model λS . Please refer to Section 3 for a detailed analysis. Finally
those log-likelihood ratio values are added over the entire test data
of N feature vectors. The result of this averaging operation Λ(X)
is compared to a decision threshold θ for accepting (Λ(X) ≥ θ)
or rejecting (Λ(X) < θ) the hypothesis that X is indeed from the
claimant speaker.

3. MINIMUM LOG-LIKELIHOOD RATIO DIFFERENCE
(MLLDR) QUANTIZER

The goal of standard scalar quantization is to encode the data from a
source, characterized by its probability density function (pdf), with
the lowest possible rate and the smallest average distortion. The most
common distortion measure is the squared error. The expected value
of the distortion over the source distribution is the mean squared
error between quantized and unquantized data. Standard quantizer
design algorithms for this distortion measure iteratively compute
encoder partitions based on the nearest neighbor condition and de-
coder reconstruction levels based on the centroid condition.However,
given the verification task and the log-likelihood ratio test, we ar-
gue that the squared loss in log-likelihood ratio is a more appro-
priate distortion measure. That is, our quantizer must minimize�
Λ(X) − Λ( �X)

�
2

to minimize the impact on the verification task,

where �X denotes the quantized version of X.

3.1. Simplifying the Log-Likelihood Ratio

Let gi,j denote the index of the top-scoring UBM Gaussian given a
feature element x

j
i . Let µSgi,j

= µBgi,j
+ δgi,j

denote the MAP-
adapted mean of the gi,j th Gaussian from the speaker model. Recall
that the weight coefficients wgi,j

and covariance matrices Σgi,j
of

the UBM mixture model and corresponding adapted speaker model
are identical. Also, recall that the D feature elements are mutually
independent. Therefore the log-likelihood ratio Λ(xj

i ) simplifies as
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Fig. 2. Approximation of the log-likelihood ratio at the decoder.

follows:

Λ(xj
i ) = log p(xj

i |λS) − log p(xj
i |λB)

= log wgi,j
− 1

2
log 2π − log σgi,j

−
(xj
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)2

2σ2
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+

1

2
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)2

2σ2
gi,j

=
1
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�
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)2
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=
δgi,j

σ2
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x

j
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(1)

The decision is taken after N feature vectors. Thus, the average log-
likelihood ratio Λ(X) can be computed as:

Λ(X) =

N�
i=1

D�
j=1

δgi,j

σ2
gi,j

�
x

j
i −

(µSgi,j
+ µBgi,j

)

2

�
(2)

3.2. Computing the Log-Likelihood Ratio at the Decoder

Let �xj
i denote the quantized value of x

j
i received by the decoder.

The statistics of �xj
i are not continuous. Instead �xj

i follows a discrete
probability mass function. However we show that it is valid to use
the original pdf at the decoder to compute Λ(�xj

i ). Consider indeed
Figure 2. The quantization interval [xL, xR] is fixed, the centroid of
which is the reconstruction value �xj

i . Let P (�xj
i |λS) and P (�xj

i |λB)
represent the diagonally striped areas on Figures 2a and 2b, respec-
tively. Now consider Figure 2c. Through analysis, one can show
that the two gray-shaded triangles have approximately the same area.
Thus, P (�xj

i |λS) approximately equals p(�xj
i |λS)(xR − xL). Simi-

larly, P (�xj
i |λB) ≈ p(�xj

i |λB)(xR − xL). Hence, we have:

Λ(�xj
i ) = log

P (�xj
i |λS)

P (�xj
i |λB)

≈ log
p(�xj

i |λS)

p(�xj
i |λB)

(3)

Equation 3 shows that using the original pdf to compute Λ(�xj
i ) at the

decoder is a good first approximation. This approximation improves
as the quantization bin size decreases (i.e. |xR − xL| �→ 0).

3.3. MLLDR Quantizer Design

From Equations 1, 2 and 3, the loss in log-likelihood ratio between
an unquantized feature vector xi and its quantized version �xi can be
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written as:

Li =

D�
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i ) − Λ(�xj
i )
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�
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We wish to minimize the expected value of the squared loss E
�L2

i

�
:

E
�L2

i

�
= E

��� D�
j=1

δgi,j

σ2
gi,j

(xj
i − �xj

i )

	2

�

= E

�
D�

j=1

δ2

gi,j

σ4
gi,j

(xj
i − �xj

i )
2




+ E

�� D�
j=1

�
k �=j

δgi,j
δgi,k

σ2
gi,j

σ2
gi,k

(xj
i − �xj

i )(x
k
i − �xk

i )


�
=

D�
j=1

N�
i=1

wgi,j

δ2

gi,j

σ4
gi,j

E
�
(xj

i − �xj
i )

2

�

+
D�

j=1

�
k �=j

N�
i=1

wgi,j

δgi,j
δgi,k

σ2
gi,j

σ2
gi,k

E
�
x

j
i − �xj

i

�
E
�
x

k
i − �xk

i

�
Note that the mean is usually not affected by quantization. The cen-
troid of each interval is indeed chosen as the reconstruction value.
Therefore, the second term goes to zero and we have:

E
�L2

i

�
=

D�
j=1

N�
i=1

wgi,j

δ2

gi,j

σ4
gi,j

E
�
(xj
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i )

2

�
(5)

Equation 5 shows that the quantizer that minimizes the squared loss
in log-likelihood ratio for single-speaker verification simply is a con-
ventional weighted MSE quantizer.

3.4. Quantization for Multiple Speakers

Speaker verification systems are usually set up so as to verify that
the sequence of feature vectors X is from a set of M > 1 claimant
speakers. Thus, M independent log-likelihood ratios are computed
and averaged over time. Let Lm = Λm (X) − Λm( �X) denote the
log-likelihood ratio difference for the mth claimant speaker. Clearly,
producing M quantized versions of X is not an admissible solu-
tion. Instead, we wish to find the quantizer that jointly minimizes
the expected value of the log-likelihood ratio difference over all M

claimant speakers. Thus,

E

�
M�

m=1

(Lm
i )2



=

M�
m=1

E
�
(Lm

i )2
�

=
M�
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E
�
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2

� M�
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δ
2
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= M

D�
j=1

N�
i=1

wgi,j

∆gi,j

σ4
gi,j

E
�
(xj

i − �xj
i )

2

�
,

where ∆gi,j
= 1

M

�M

m=1
δ2

m,gi,j
. Thus, the quantizer that mini-

mizes the squared loss in log-likelihood ratio for multi-speaker veri-
fication is also a weighted MSE quantizer.

4. VARIABLE BIT ALLOCATION

The objective is to determine the number of bits to devote to each
element of a feature vector so as to minimize a cost function under
a rate constraint. The rate constraint is expressed as the total num-
ber of bits bT per D-dimensional feature vector. Let bj denote the
number of bits per feature dimension, and bc represent the number
of bits required to code the index of the top-scoring D-dimensional
Gaussian given a feature vector xi. Therefore, the rate constraint is
expressed as bq = bT − bc ≥�D

j=1
bj .

Let Dj (bj) = E
��

x
j
i − �xj

i

�2�
denote the MSE when bj bits

are used to quantize x
j
i . Recall that x

j
i is a random variable follow-

ing a Normal distribution. Thus, for high-resolution, Dj(bj) can be
expressed as:

Dj(bj) =

√
3π

2
σ

2

j 2−2bj

4.1. Single-Speaker Verification

We derive the number of bits to use by feature element x
j
i given the

top-scoring Gaussian gi,j by minimizingL2

i under the rate constraint�D

j=1
bj ≤ bq. We cast the optimization problem as the following

Lagrange cost function:

C =
D�

j=1

δ2

gi,j

σ4
gi,j

Dj(bj) + λ

�
D�

j=1

bj − bq

	

=

D�
j=1

δ2

gi,j

σ4
gi,j

√
3π

2
σ

2

gi,j
2−2bj + λ

�
D�

j=1

bj − bq

	

Equating its first derivative with respect to the bit assignment vari-
able to zero and following the derivations in [4], we obtain the num-
ber of bits per dimension given the index of the top-scoring Gaussian
gi,j :

b
j
gi,j

=
1

D
bq +

1

2

�
δ2

gi,j

σ2
gi,j

− 1

D

D�
k=1

log
2

�
δ2

gi,k

σ2
gi,k

	

(6)

Implementation details are provided in Section 4.3.

4.2. Multi-Speaker Verification

Similarly but minimizing
�M

m=1
(Lm

i )2 instead, we obtain:

b
j
gi,j

=
1

D
bq +

1

2

�
∆gi,j

σ2
gi,j

− 1

D

D�
k=1

log
2

�
∆gi,k

σ2
gi,k

	

(7)

where ∆gi,j
= 1

M

�M

m=1
δ2

m,gi,j
.

4.3. Bit Allocation: Implementation Details

Equations 6 and 7 do not guarantee that bj
gi,j

is a non-negative in-

teger. Let β =
�

b1

gi,1
, · · · , bD

gi,D

�
denote the bit allocation vector

given the input feature vector xi. Enforcing the non-negative condi-
tion is known in the quantization literature. We enforce the integer
condition by the following algorithm:

1. Calculate �β� by rounding down every element of β.

2. Pick the top
�
bq −�D

j=1
�bj

gi,j
�
�

elements from the vector

(β − �β�) and add one bit to those elements.
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Fig. 3. Distributed Speaker Verification: Block diagram.

5. DISTRIBUTED SPEAKER VERIFICATION

Our Distributed Speaker Verification system is illustrated by Fig-
ure 3. Mel-frequency cepstral coefficients (MFCC) are extracted
and pre-processed from input speech frames. The feature vectors are
used to identity the top-scoring D-dimensional UBM Gaussian. The
feature vector is then quantized using an MSE quantizer designed for
the top-scoring Gaussian. Each feature element is coded on a num-
ber of bits given by β. The bit allocation vector β is computed in the
server given the set of claimant speakers and communicated to the
front-end. Note that β must be updated whenever the set of claimant
speakers changes. The quantized feature vector together with the
coded index of the top-scoring Gaussian is sent to the speaker veri-
fication unit, which de-quantizes the incoming vector and computes
the average log-likelihood ratio to perform speaker verification.

6. EXPERIMENTS

We validate the efficacy of our approach on the appropriately modi-
fied state-of-the-art IBM Speaker Verification system [3].

6.1. Experimental Setup

The data consisted of the audio portion of the HUB4 Broadcast News
Database (mono 16kHz PCM). A subset of 64 speakers was se-
lected as the target speaker set. A feature vector consists of 19-
dimensional MFCC and their first derivatives1 with feature warp-
ing(i.e., D = 38). A rate of 100 frames per second, with 50% over-
lap was used and the MFCC were computed over a 20 millisecond
window. For each speaker, two minutes of data were set aside and
used for training the final models. The UBM, trained on indepen-
dent broadcast news data, contained 256 38-dimensional Gaussian
components. The speaker models, being MAP-adapted from the
UBM, also had 256 components. For each speaker, 30 seconds (i.e.,
N = 3000 feature vectors) were used for testing performance.

6.2. Experimental Results

We compare the verification performance of the original system (un-
quantized features; 32 bits per feature element) against two quantiza-
tion methods: (i) Our quantizer with variable bit allocation, and (ii)
Conventional MSE quantizer designed from the UBM model with
uniform bit allocation. Note that the latter approach does not require
to pick the top-scoring Gaussian before quantization. Thus, we as-
sign the extra bc = 8 bits to the best feature elements. That is, those

feature elements with the highest
δgi,j

σ2
gi,j

ratio.

Experiments were run for various rate constraints. Figure 4
shows the single-speaker verification performance for a 1:32 com-
pression ratio (i.e., 1 bit per dimension, on average). Our quanti-
zation method performs extremely well considering that 1 bit per

1Quantizing the 19 MFCC elements only and computing their derivatives
in the server is beyond the scope of this work but will soon be investigated.

  0.1   0.2   0.5    1    2    5   10   20   40   60   80   90   95   98   99
   0.1
   0.2

   0.5

     1

     2

     5

    10

    20

    40

    60

    80

    90

    95

    98

    99

False Alarm probability [%]

M
is

s 
pr

ob
ab

ili
ty

 [%
]

Original EER=1.6865%

VBA @ 1bit EER=1.7361%

MSE @ 1bit EER=19.0972%

Fig. 4. Single-Speaker Verification on HUB4 Corpora: Performance
of unquantized (original; 32 bits per dimension) and quantized fea-
ture vectors (our method & conventional MSE; 1 bit per dimension).

feature element translates into being left/right of the corresponding
Gaussian’s mean. One may suspect that most dimensions are use-
less such that most feature elements are simply skipped, allowing
non-skipped feature elements to use a relatively high number of bits.
Actually, most feature elements are indeed coded and only a few fea-
ture elements use a number of bits greater than one (maximum of 3
bits). Finally, note that the performance of the conventional MSE
quantizer is bad (increases the Equal Error Rate, or EER, by more
than 18%). Similar conclusions were drawn for loser rate constraints
and multi-speaker verification performance.

7. CONCLUSIONS

We designed an optimized quantization and variable bit allocation
strategy for speaker verification systems based on adapted Gaussian
mixture models. Our quantization strategy minimizes the squared
loss in log-likelihood ratio, and was shown to trivialize to a conven-
tional weighted MSE quantizer. A bit allocation vector was also de-
rived analytically. Finally, we validated the efficacy of our approach
on a modified version of the IBM Speaker Verification system. Re-
sults showed significant improvements in the achievable compres-
sion with negligible impact on verification accuracy.
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