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ABSTRACT 

Conventional speaker recognition systems perform poorly under 
noisy conditions. In this paper, we evaluate binary time-frequency 
masks for robust speaker recognition. An ideal binary mask is a 
priori defined as a binary matrix where 1 indicates that the target is 
stronger than the interference within the corresponding time-
frequency unit and 0 indicates otherwise. We perform speaker 
identification and verification using a missing data recognizer 
under cochannel and other noise conditions, and show that the 
ideal binary mask provides large performance gains. By employing
a speech segregation system that estimates the ideal binary mask, 
we achieve significant improvements over alternative approaches.
Our study, thus, demonstrates that the use of binary masking 
represents a promising direction for robust speaker recognition.  

1. INTRODUCTION 

Cochannel speech comprises speech mixtures from two talkers 
who, unlike conversations, are unaware of each other. 
Consequently, speech from both channels has large overlap, which 
presents a considerable challenge for automatic speaker 
recognition. Previously, we proposed the use of estimated pitch 
contours for automatic extraction of usable speech segments [12], 
defined as consecutive frames of speech that are dominated by one
speaker [7]. Furthermore, a model-based sequential grouping 
method organizes the segments into corresponding streams using 
available speaker models. It achieves speaker identification (SID) 
performance close to that when the usable segments are assigned
ideally.  

However, some of the usable frames still contain sound energy 
from both speakers. Instead of extracting usable speech at the 
frame level, it may be desirable to identify usable speech at the 
level of time-frequency (T-F) units so that recognition 
performance could be further improved under noisy conditions. 
For such purposes, we study binary T-F masks for robust speaker 
recognition in this paper.  

To use binary time-frequency masks for recognition, we 
employ a missing data method [4] for robust SID and speaker 
verification (SV) tasks. The basic idea is to treat the noise-
dominant T-F units as missing during recognition. To apply a 
missing data recognizer requires a binary mask to provide 
information about whether a specific T-F unit is reliable or 
missing. Drygajlo and El-Maliki proposed a robust SV method by 

combining spectral subtraction and missing data recognition [4], 
[5]. Spectral subtraction is used to obtain the needed binary mask. 
Their method works well for stationary noise, but it degrades 
severely in nonstationary noise conditions, such as cochannel 
speech.  

In this paper, we evaluate binary T-F masks for robust speaker 
recognition using the missing data method. Given premixing 
recordings, the ideal binary mask is easily conducted which labels 
a T-F unit as reliable if it contains more energy from target than 
interference, and labels it as unreliable otherwise [13]. We find 
that the ideal binary mask achieves substantial performance gains 
under cochannel and additive noise conditions. We also employ a 
voiced speech segregation system to estimate the ideal binary
mask [6]. Our results are compared with those using binary masks
estimated by spectral subtraction for conditions where target 
speech is corrupted by cocktail party noise or rock music. The 
comparison shows that our estimated binary masks perform 
significantly better.  

The rest of the paper is organized as follows. Section 2 
describes the notion of the ideal binary mask. Ideal mask 
estimation using speech segregation is presented in Section 3. 
Section 4 describes our missing data recognizer. Evaluation results 
are given in Section 5. Section 6 concludes the paper. 

2. IDEAL BINARY TIME-FREQUENCY MASK  

A two-dimensional time-frequency representation is widely used 
in speech processing. Within this representation, the binary T-F 
mask furnishes the information about whether a T-F unit is 
reliable or not. The ideal binary T-F mask [13] is a binary matrix, 
defined a priori as follows:  
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M ( f , t ) is the T-F mask indexed by frequency f and time t. 
S ( f , t )  is the energy from the target source in the frequency 
channel centered at f and frame t; N ( f , t )  is the corresponding 
energy from the interfering source. If a T-F unit contains stronger 
energy from target than interference, the corresponding mask 
element is labeled 1; it is assigned 0 otherwise. This implies a 
local signal-to-noise ratio (SNR) criterion of 0 dB. Given 
premixing target and interfering signals, the ideal binary mask can 
be readily constructed. 

The ideal binary mask is directly motivated by the human 
auditory masking phenomenon [8], and it has many desirable 
properties. The ideal binary mask provides the maximum SNR 
gain of all the binary masks [6]. Moreover, such masks have been 
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applied to robust speech recognition and shown to be highly 
effective as a front-end [3], [10]. Besides, depending on what the 
target is, the ideal binary mask can be constructed differently. 
Under cochannel conditions, the binary values of a T-F unit in the 
mask correspond to the two underlying speakers in the mixture. If
one speaker is of interest to the user, it can be designated as target, 
and the other speaker will be the interferer. If both speakers are 
desired, after selecting one as the target, the other speaker could 
be identified through the complement mask. Under non-speech 
noisy conditions, the speech signal to be recognized can be 
regarded as target, and the ideal binary mask can be defined 
accordingly. 

3. ESTIMATION OF IDEAL BINARY MASK 

Construction of the ideal binary mask requires prior recordings of 
target and interferer sources. To estimate the ideal binary mask, 
we adapt and apply a pitch-based speech segregation system [6].   

This system produces a binary T-F mask after four stages of 
processing. In the first stage, the input signal is transformed into 
T-F domain by passing through a Gammatone filterbank in 
consecutive time frames. Here a T-F unit corresponds to the 
response of a frequency channel within a time frame. Then the 
system extracts temporal and frequency features of the units. 

In the second stage, the T-F units are merged into segments 
using the extracted features. The units that establish similar 
responses are supposedly from the same source and therefore 
grouped together. Thus, the resulting segments are deemed to be 
homogeneous.  

In the third stage, the units are labeled target or background 
according to the estimated target pitch period. (see Section 5.2) 
Specifically, for low-frequency channels where harmonics are 
resolved, if a unit shows similar response at the target pitch
period, the corresponding T-F unit is labeled as target-dominant; it
is labeled background otherwise. For high-frequency channels that 
respond to several harmonics, an amplitude modulation model is 
used to determine whether a unit response shows beating at the 
target pitch period and thus considered as target-dominant.  

In the final stage, the segments from the second stage are 
further grouped into target or background streams according to the 
unit labels. Target units are labeled 1 in the mask, and background 
units are labeled 0. Figure 1 gives an illustration of a mask 
estimate from noisy speech. 

4. MISSING DATA RECOGNITION 

To utilize the binary masks for robust speaker recognition, we 
employ a missing data method in the T-F domain. 

In a typical speaker identification or verification system, the 
probability distribution of an extracted feature vector, x, produced 
by a speaker, λ, is modeled as a Gaussian mixture model (GMM) 
[9]. GMM is a weighted linear combination of M unimodal 
multivariate Gaussian densities, typically parameterized with 
diagonal covariance matrices [3]. Given a binary mask showing 
whether a feature component is reliable or missing, the feature 
vector can be split into reliable components, xr, or unreliable ones, 
xu, and its probability density becomes, 
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wk is the weight of the k th Gaussian mixture. xi and xj refer to a 
reliable and unreliable feature component in x, respectively; µk·

and 2
kσ ⋅  are their corresponding means and variances in the k th 

Gaussian mixture.  
The first likelihood term on the right-hand side of eq. (2) can 

be easily obtained from training since the features are considered 
reliable (clean). However, the second likelihood term is hard to 
compute because the feature component is regarded as missing 
and its distribution is unknown. There are two approaches to 
handle this situation, marginalization and imputation [3]. The 
latter seeks to impute the missing features and replace them with 
estimates. The former reduces the distribution by integrating over 
the missing components. Imputation increases computational 
complexity but does not necessarily produce better verification 
results [5]. In this paper, we use marginalization and compute the 
overall likelihood as, 
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The likelihood of a noisy utterance given a specific speaker
model is computed as the likelihood product of feature vectors of 
individual frames. For SID tasks, the speaker model that gives the 
maximum likelihood value is selected as the identified speaker. 
For SV tasks, we use universal background models (UBM) for 
score normalization. This missing data method, i.e. eq. (3), can be 
naturally extended to include the UBM.  

5. EVALUATION 

5.1 Cochannel SID evaluation 

This experiment demonstrates the SID performance when the 
noise source is a speaker. To have a consistent comparison with 
previous studies [7], [11], [12], we use the same evaluation data 
from the TIMIT corpus. Specifically, the speaker set consists of 38 
speakers from the “DR1” dialect region, 14 of which are female 
and the rest are male. For each speaker, 5 out of 10 utterances are 
randomly selected for speaker model training and the remaining 5 
are used for testing purpose. The training data for a speaker 
averages 10 sec of clean speech, and 16-mixture GMMs are 
trained using the EM algorithm [9]. 

Cochannel speech is simulated by mixing the utterances in the 
testing corpus. When one speaker is deemed as target, every other
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Figure 1. Illustrations of noisy speech, its ideal binary mask 
and estimated mask. Noisy speech is created by mixing clean 
speech and cocktail party noise at 10 dB. 

I  646



speaker could be considered as interferer. For each pair, 1 out of 5 
test files is randomly selected from the target and mixed with 
randomly selected files from the interferer. The utterances are 
aligned in length and mixed at target-to-interferer ratio (TIR) of -5 
dB, 0 dB, 5 dB, 10 dB and 20 dB respectively. TIR is calculated as
the ratio of target speech energy to interfering speech energy. 
Hence for each TIR level, 1406 cochannel mixtures are created.  

Figure 2 presents the results of this experiment. As a baseline, 
we extract 12 mel-frequency cepstral coefficients (MFCCs) and
their first-order derivatives as the feature vector. To compare with 
usable speech processing, we apply the usable speech extraction 
method and ideally assign the extracted segments into the target 
stream using a priori pitch information [11]. The same type of 
MFCCs is derived and identification is performed on the target 
stream. To evaluate the binary masks, we implement the missing 
data recognizer with 255-coefficient DFT feature vectors. 
Specifically, vectors are extracted from the log-compressed power 
spectrum of 20 ms frames with 10 ms overlap. The frames are
extracted by applying a running Hamming window on the signal.  

It can be observed from the figure that the ideal binary mask 
performs significantly better than the usable speech method, 
which in turn is much better than the baseline performance. This is 
to be expected since the ideal binary mask provides 
reliable/unreliable information at a finer level than usable speech, 
and the T-F redundancy facilitates identification when features are 
partially missing. Evaluation of the estimated binary mask is not 
performed in this task because it is hard to determine target pitch 
contours for the speech segregation system under cochannel 
conditions. 

  
5.2 SID evaluation in noisy background 

In this experiment, we demonstrate the effectiveness of binary 
masks in adverse environments when the intrusion source is not a 
speaker. Two types of noise are selected from a noise database
collected by Cooke [2], cocktail party noise and rock music. Both
are wide-band and non-stationary, containing significant energy 
below 2 kHz. It is also observed that both noises have some 
harmonic structure because the cocktail party noise contains 
speech-like sounds and the rock music contains musical 
instruments. The noisy speech utterances are simulated by mixing 
all the test files with the selected noises at -5 dB, 0 dB, 5 dB, 10 

dB and 20 dB SNRs. For each pair of SNR and noise, 190 
mixtures are created for testing.  

Figure 3 shows the SID results for both noise conditions at 
various SNRs. The baseline system uses MFCCs and their first-
order derivatives. Cepstral mean normalization (CMN) is applied 
for robustness. We also employ spectral subtraction to estimate
binary mask for the missing data recognizer as proposed by 
Drygajlo and El-Maliki [4]. Specifically, the average noise
spectrum is estimated from the initial 10 frames of the mixture, 
and subtracted from each subsequent mixture spectrum. If the 
resulting component is greater than the noise estimate, the 
corresponding mask element is labeled 1 and 0 otherwise. The 
implied 0 dB SNR criterion is preferred over the negative energy 
criterion because it produces better results [3]. 

To estimate the ideal binary mask, target pitch contours are 
determined by applying the widely-used Praat toolkit [1] on the 
noisy speech. Please note that an estimated mask is obtained using 
the auditory filterbank that models human’s auditory response and 
it has large overlaps between neighboring filters. Directly using 
the filterbank energy gives SID accuracy of 94.2% on clean 
speech, which is significantly lower than that using the DFT 
coefficients, 99.5%. Thus, we transform the estimated mask from 
Gammatone frequency bands into DFT domain by labeling the 
corresponding frequency bins. Subsequently, the same missing 
data recognizer is used as in the previous experiment. 
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Figure 2. Speaker identification performance under cochannel 
conditions. The square line shows the performance when 
MFCCs are used. The diamond line shows the results of 
extracted usable speech segments after they are a priori
assigned. The circle line gives performance achieved by the 
ideal binary mask using the missing data method. 
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Figure 3. Speaker identification performance under noisy 
conditions. The top plot shows the results for cocktail party 
noise, and the bottom one for rock music. The square line 
represents baseline results of the GMM recognizer using 
cepstral mean normalized (CMN) MFCCs. The diamond line 
shows the missing data recognition results using binary masks 
estimated by spectral subtraction (SS). The circle line gives 
performance achieved by the ideal binary mask. The star line 
shows the results of the estimated ideal binary mask. 
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It can be observed from the figure that the estimated binary 
mask performs significantly better than the baseline system using 
MFCC-CMN. As both noises are non-stationary, spectral 
subtraction is unable to provide a good mask estimate, and its 
performance degrades sharply with decreasing SNR. The ideal 
binary mask produces best performance. Since this is a 
preliminary study, the performance gap between the ideal binary 
mask and estimated mask leaves much room for improvement by 
adopting the binary mask approach. 

5.3 SV evaluation in noisy background 

In a similar configuration as the preceding experiment, we 
evaluate binary masks for speaker verification tasks. Here, only
the mixtures with the cocktail-party noise are tested on the 38-
speaker set. One mixture file contributes 1 true score for the target 
speaker and 37 imposter scores for the other speakers in the set. 
For each SNR, there are 190 true scores and 7030 imposter scores. 
The scores are normalized using a UBM of 4096 mixtures, which 
is trained from the entire TIMIT training set, excluding the above 
38 speakers. 

Evaluation results are given in Figure 4. The ideal binary mask 
yields substantial performance gains over the baseline in the entire 
range of SNR levels. The estimated mask achieves significant 
improvement from 10 dB to -5 dB. It under-performs only at the 
20 dB condition largely due to the segregation strategy that 
attempts to reconstruct the target signal by grouping harmonic 
components [6]. Consequently, inharmonic target components are 
removed even when interference is very weak. 

6. CONCLUSION 

We have evaluated the utility of the ideal binary time-frequency 
mask for robust speaker recognition. Our evaluation under 
cochannel and noisy conditions shows that the ideal binary mask 
produces superior performance. We have also employed a speech 
segregation system that estimates the ideal binary mask. The
resulting system produces significant performance gains over 
alternative approaches.  
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Figure 4. Speaker verification performance under cocktail 
party noise. The top plot shows the results for the ideal binary 
mask, plotted in solid curves against MFCC baseline in dotted 
curves. The bottom one shows performance of the estimated 
binary mask in solid curves against the same baseline in dotted 
curves. 
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