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ABSTRACT

In pattern recognition, the need to quantify the quality of a clas-
sifier’s output has gained importance in the past years. Speaker ver-
ification is no exception. This paper presents a probabilistic relia-
bility framework incorporating signal-domain information into the
confidence estimation and contrasts this method with classical ap-
proaches to estimating the confidence in a given speaker verification
classifier output. We show that the method proposed can deal with
adverse acoustic conditions for a wide range of signal-to-noise ra-
tios, does not depend on a Gaussian assumption for impostor and
client score distributions, and presents benefits in terms of scalability
and interpretability of the measure. We contrast reliability and con-
fidence approaches, and evaluate performance on a degraded version
of the 295-users XM2VTS database.

1. INTRODUCTION

Many areas of pattern recognition make use of measures that express
the uncertainty in a classifier’s output, at the measurement (score) or
decision levels. Speech recognition systems often output confidence
levels with recognised words, dialogue systems use them to govern
actions and repair strategies, and handwriting recognition applica-
tions make use of estimates of the segmentation module’s output to
drive feedback mechanisms. In biometric authentication, in partic-
ular speaker verification, the idea that the uncertainty in the output
of classifiers should be quantified has gained ground in the last few
years.

One of the most important factors affecting the performance of
speaker verification systems (apart from lack of training data) is the
mismatch between training and testing conditions. Both convolu-
tional (channel) and environmental (partly additive) noise can be
present, dramatically impacting recognition performance.

In these circumstances, basing a confidence measure only on
classifier-domain information (such as likelihood or distance given
by the classifier,posterior probability, n-best lists) is likely to reach
limits that require additional information (signal-domain or feature-
domain) to overcome. Thus, several approaches have been proposed
to try and integrate multiple sources of information into the confi-
dence estimation process ([1], [2], [3], [4]).

In the rest of this paper, we review several approaches for es-
timating confidence (Section 2), we expand on the theory behind
the reliability approach and contrast with confidence measures (Sec-
tion 3), and present some experiments on the XM2VTS database
(Section 4).

2. CONFIDENCE MEASURES IN SPEAKER
VERIFICATION

In some speaker recognition applications, such as forensic speaker
identification, it is crucial to have an estimation of the certainty of
a score. Thus, early research into confidence measures for speaker
recognition has originated in forensic science [5].

In this section, we divide confidence measures for speaker ver-
ification into two areas: those that use classifier-domain informa-
tion only (such as scores and posterior probabilities), and those that
take into account other source of information such as signal-domain
quantities (e.g. signal-to-noise ratio or duration).

2.1. Classifier-domain confidence measures

Knowing the expected impostor and client score distributions pro-
vides important insights into the classifier’s behaviour. It will be
possible to assign confidence values to different portions of the score
range. Several methods are used to model confidence in relation with
score distributions, of which we provide a brief overview below.

We reformulate Nakasone and Beck’s [5] Bayesian confidence
measure definition (which matches Fredouille et al’s [6] definition
for MAP normalisation in a multiple classifier speaker verification
system) in our biometric identity verification terms as follows:

P (TID = 1|Sc) =
P (TID = 1)P (Sc|TID = 1)Pid=1

id=0 P (TID = id)P (Sc|TID = id)
,

(1)
where TID (true identity) is a binary variable indicating whether
the utterance comes from a true client (TID = 1) or an impos-
tor (TID = 0), and Sc is a continuous random variable indicating
the output of the classifier, generally in the form of a log-likelihood
ratio. The confidence measure can be phrased as “the a posteriori
probability that the utterance is from a client given the score”. As-
suming that the client and impostor score distributions are Gaussian,
they then define the confidence measure by fitting a logistic function
to the posterior probability represented by Eq. 1:

CM1(Sc) =
e(β0+β1Sc)

1 + e(β0+β1Sc)
(2)

Bengio et al. [7] proposed three methods for computing confi-
dence, all based on classifier-domain quantities. The simplest method
which we present below assumes that impostor and client scores are
normally distributed (another non-parametric method is presented in
the paper that makes no such assumption), and defines confidence as
the difference in probability for a given score between the client and
impostor distributions learned on an evaluation set:

CM2(Sc) = |P (Sc|TID = 1) − P (Sc|TID = 0)| (3)
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2.2. Multiple-domains confidence measures

More recently, there has been a surge of interest in taking additional
sources of information into account.

Campbell et al. [2] use signal-domain data (utterance duration,
channel label and signal-to-noise ratio) in addition to utterance score
to estimate a confidence for each score. Here, the task is to com-
pare whether two utterances come from the same speaker, using a
speaker verification system. The confidence measure in this case can
be phrased as “the a posteriori probability that the two utterances
come from the same speaker”. The confidence modelling is done by
training a multi-layer perceptron (MLP), meaning no a priori form
for the distribution has to be assumed; furthemore the output of the
MLP should approximate the Bayesian a posteriori confidence of
Eq. 1. However, apart from this single posterior output, which has a
clear meaning, the parameters and the architecture of the MLP itself
are hard to interpret.

Huggins and Grieco [1] have proposed taking into account addi-
tional information beyond signal-domain quantities, such as amount
of overlap between models in feature space. Their main indication
of confidence is a combination of train/test utterance duration and
signal-to-noise ratio. Their method is based on computing error rates
with respect to 7 discrete SNR levels (pink noise mixed in from 6dB
to 24dB) for 13 different utterance durations, thus resulting in 91 re-
gression models indexed by train and test utterance duration. The
amount of overlap between models can then be added by performing
another level of regression on top of the basic duration/SNR combi-
nation One issue that is reported is that the model may be overly re-
lying on SNR as its main indication of classifier performance, as the
accuracy of confidence prediction drops when training and testing
environments are matched. It is not clear how additional measures
of quality would be added to the model. The confidence measure
derived does not lend itself easily to a probabilistic interpretation.

Poh and Bengio [4] use the false accept rate for a certain score
(taken as threshold) subtracted with the false reject rate for the same
threshold:

CM3(Sc) = |FAR(Sc) − FRR(Sc)| (4)

The client and impostor distributions are trained on an evalua-
tion set. This is an interesting approach since it takes into account
the distribution of errors with respect to a score. Thus, the closer the
score is to the decision threshold, the lower the confidence. They
then combine this with a speech quality measure to enhance fusion
in multimodal biometrics.

3. RELIABILITY MEASURES FOR SPEAKER
VERIFICATION

In all confidence measures presented in Section 2, a quantity that
plays a central role is P (Sc|TID), that is the likelihood of a score
given a client or impostor score distribution. We argue here that
it is more interesting to directly use the probability of making an
erroneous decision given a certain score and other information, as it
allows to quantify the competence of the classifier directly.

We first introduce three new variables. CID is a binary variable
which indicates the classifier’s decision (CID = 0 if the classifier
decides for impostor access, CID = 1 if the classifier decides for
client access). DR (Decision Reliability) is also a binary variable
which indicates whether the classifier was wrong (CID �= TID)
or correct (CID = TID) with respect to the ground truth TID.
Finally, QM (Quality Measure) is a vector random variable which
contains signal-related quantities pertaining to the amount of noise in

the signal. With these variables, our definition of reliability measure,
“the posterior probability of taking a correct decision given available
evidence”, can be written as

P (DR = 1|CID, Sc, QM ) (5)

In this section, we compare our approach (more fully exposed
in [3]) with others found in litterature and expose its advantages and
disadvantages.

3.1. Speech signal quality measures

Additive noise is known to have a negative impact on speaker veri-
fication performance. If the speaker verification system has access
to a measure of the amount of noise present with the speech sig-
nal, better reliability estimates can be obtained. However, the noise
estimation process itself is fallible, especially if it relies on explicit
speech/pause segmentation of the source signal with a non-robust
voice activity detector (VAD). Thus, it is beneficial to have several
estimates of the signal quality and to combine them at a later stage.

The first quality measure used in our experiments, QM1 is re-
lated to the signal-to-noise ratio and uses a VAD algorithm based on
the “Murphy algorithm” described in [8]:

QM1 = 10 log10

PN

i=1 Is(i)s2(i)PN

i=1 In(i)s2(i)
, (6)

where {s(i)}, i = 1, . . . , N is the acquired speech signal con-
taining N samples, Is(i) and In(i) are the indicator functions of
the current sample s(i) being speech or noise during pauses (e.g.
Is(i)=1 if s(i) is a speech sample, Is(i)=0 otherwise) as reported by
the voice activity detector.

The second quality measure, QM2, is a SNR-related estimate,
which is calculated using Equation 6. The difference in this case
is that we make use of the short-term spectral entropy for assigning
values to Is(i) and In(i). The entropy is a measure defined over a
probability distribution function (pdf). It measures the peakiness of
the pdf and is closely related to the informativeness of the distribu-
tion. The spectral entropy is calculated over the short term spectrum
values, where the spectral values are normalized to sum up to 1 thus
forming a pdf. The spectral entropy is calculated as follows:

H(|Y (w, t)|2) =

−
ΩX

w=1

|Y (w, t)|2

ΣΩ
w=1|Y (w, t)|2

log

„
|Y (w, t)|2

ΣΩ
w=1|Y (w, t)|2

«
, (7)

where |Y(w, t)|2 is the power spectrum for frame t. H(|Y(w, t)|2)
is maximized when we have white noise and is minimized when we
have a pure tone. The application of entropy relies on the assumption
that the presence of pitch in speech segments results in a more orga-
nized signal (presenting series of peaks in the spectrum) compared
with the case of noise (pauses). Thus, the entropy value is higher
for pause than speech regions. The algorithm used in this paper is
similar to the one presented in [9].

3.2. Graphical models for reliability modelling

Graphical models offer a very expressive and flexible framework for
modelling a variety of phenomena. In our case, we use a Bayesian
network to represent the joint conditional distribution of the vari-
ables of interest. The topology of the Bayesian network is repre-
sented on Figure 1, and the rationale behind it is presented in [3].
Round nodes represent continuous random variables, and square no-
des discrete random variables. Shaded nodes (evidential variables)
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are observed in testing, others are hidden (no value is provided in
testing). Continuous random variables are modelled by Gaussian
distributions, and discrete random variables by probability tables es-
timated from counts in training data.

QM

DR

Sc

TID

CID

M1 M2

Fig. 1. Graphical model for decision reliability posterior distribution

Given the Bayesian network variables set V = (DR, TID,

CID, Sc, QM, M1, M2), where M1, M2 represent mixing wei-
ghts learned through a maximum likelihood algorithm, and taking
into account the arcs defined in Fig. 1, the joint pdf over V can be
written as:

P (V ) = P (DR)P (TID)P (CID|TID, DR)

·P (Sc|DR, TID, CID, M1)P (M1|TID)

·P (M2|DR)P (QM |DR, M2) (8)

The posterior P (DR|CID, Sc, QM) is the distribution of the
decision reliability measure. Following the network topology the
posterior distribution over DR can be written as:

P (DR|cid, sc, qm) = α
X

TID,M1,M2

P (V ) (9)

For a given value of DR, say DR = 1, and a classifier decision
CID = cid, the distributive law can be applied to Eq. 9 to simplify
the computation:

P (DR = 1|cid, sc, qm) = αP (DR = 1)P (TID = cid)

·
X
M1

P (M1|TID = cid)| {z }
�

·P (sc|DR = 1, M1)

·
X
M2

P (M2|DR = 1)| {z }
�

P (qm|DR = 1, M2) (10)

The α term is a normalisation coefficient equal to 1
P (cid,sc,qm)

.
The term P (TID = cid) is the prior probability on client or impos-
tor access happening. In our case the prior is fixed at 0.5 in training.
The P (DR = 1) term is the prior probability of the classifier de-
cision being correct. Since the testing conditions are not entirely
known in advance,this is also fixed at 0.5 in training. The terms
marked with � effectively act as mixing coefficients, and the term
within the M2 summation corresponds to a two-components Gaus-
sian mixture model over the quality measures. The P (Sc|DR, TID,

CID, M1) term in Eq. 8 can be simplified to P (sc|DR = 1, M1)
in Eq. 10, because a value of 1 for DR means by definition that
TID = CID, and a certain classifier decision, CID = cid will
then be reflected by TID = cid. In this case, the term defines a
single Gaussian distribution.

Thus, a 2-component Gaussian mixture model is used to model
the distribution of scores in the cases of correct reject (TID =
0, CID = 0), false accept (TID = 0, CID = 1), false reject
(TID = 1, CID = 0), and correct accept (TID = 1, CID = 1).
This essentially decomposes the two classical client (P (Sc|TID =

1)) and impostor (P (Sc|TID = 0)) distributions in four sub-distribu-
tions, each having the possibility of deviating from the Gaussian dis-
tribution.

The first difference between the reliability approach and classi-
cal confidence approaches is that no Gaussian assumption is made
about the impostor and client score distributions, since these are
modelled by a 2-components GMM. Thus, they are allowed to have
different skewness or kurtosis than the normal distribution. However
it should be noted that in experiments the difference in prediction
accuracy between Gaussian assumption and non-Gaussian assump-
tion for scores proved minute, with very slightly better results for
the non-Gaussian assumption. This result is likely to be data and
classifier-dependent.

The second difference with classical confidence approaches is
that the model is trained explicitly on correct and erroneous classifi-
cation decisions, meaning that one important quantity is P (Sc|DR

= 1), respectively P (Sc|DR = 0), rather than the impostor or
client score distributions P (Sc|TID) . Thus, the model learns score
distributions with respect to classifier behaviour (error or correct
classification), and is able to detect these behaviours in testing. The
downside is that there are more model parameters to be estimated
on evaluation data than for simpler confidence models, resulting in a
more time-consuming approach.

An important advantage of the reliability approach is that it read-
ily provides a framework for incorporating several signal quality
measures into the reliability estimation problems. It is quite scal-
able, as adding new quality measures can simply be done by ap-
pending to the QM vector. The covariance matrix estimated on that
node of the Bayesian network will efficiently model existing correla-
tions between the quality measures, without requiring another layer
of modelling for each new information put into the measure.

Lastly, using graphical models for reliability estimation provides
a comprehensive interpretation framework, as several posteriors can
be elicited from the joint distribution. For example, eliciting P (DR

= 1|CID, Sc, QM ) can be phrased as “the probability of having
taken a correct classification decision given evidence”, and the poste-
rior P (TID = 1|CID, Sc, QM ) can be phrased as “the probabil-
ity of this utterance being a client utterance given evidence”, where
in both cases “evidence” can be expanded to “the classifier’s opinion,
the score, and a vector of quality measures”.

4. EXPERIMENTS AND RESULTS

The database used in experiments is the XM2VTS database [10],
which contains 295 clients, recorded over 4 sessions. The protocol
followed is the Lausanne protocol, configuration 1. To investigate
the effects of noisy and mismatched conditions, we created a second
version of this database by mixing in non-stationary additive babble-
type noise recorded in a lively cafeteria in amounts from 20 to 0 dB
SNR, where the noise sample is longer than the utterances and a
random portion of the noise is chosen each time.

Each of the 200 clients provides 3 evaluation utterances, and 25
evaluation impostor each provide 8 utterances. This results in 600
evaluation client accesses and 40000 evaluation impostor accesses.
The total amount of client test accesses is 400, with 112000 impostor
accesses. The test results for the speaker verification system on clean
and noisy test data are shown in Fig. 2 to provide an overview of the
extent of the degradation applied.

The speaker verification system used is based on the Alize tool-
kit [11]. The Alize speech/pause detector is run to remove silence
portions of the input speech signal before feature extraction. Fea-
tures used are 12 MFCCs with delta and acceleration coefficients,
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Fig. 2. DET curves for speaker verification system with clean and
noisy test data, and in both cases clean training data

and cepstral mean normalisation. A world model is trained from
the pooled clean training data of all 200 clients (each providing 3
recordings of about 10 seconds), using 200 diagonal covariance-
matrix Gaussian components. Each client’s model is then adapted
(means only) with their own 3 recordings using MAP adaptation.

The scores resulting from running the system on clean evalua-
tion data are then used to estimate a global threshold T , which is set
to the threshold which gives FAR = FRR on the evaluation set
(EER threshold).

The testing is then run again on the noisy version of the XM2VTS
database. The noisy evaluation data is used to train the parameters
of the Bayesian network presented in Section 3.2.

4.1. Accuracy of confidence and reliability measures

To evaluate the benefits brought by the reliability approach with re-
spect to classifier-domain confidence measures, we compute con-
fidence and reliability measures for all tests in the noisy database.
Then, we threshold the measures at 0.5: a confidence or reliability
above this threshold means the classifier should be trusted, whereas
its decision is probably wrong if the measures are below 0.5. We then
compare this thresholded confidence or reliability with ground truth
labels (TID) and compute accuracies. The results are presented in
Table 1. The first thing to note is that, as can be expected, the logis-
tic confidence measure (CM1) can be improved if the estimates for
clients and impostors distributions are trained on a noisy evaluation
set. The second thing to note is that factoring noise into the reliability
process improves the results significantly. Thus, training confidence
measures on noisy evaluation data is a way to improve the accu-
racy of confidence estimation, but it is better to take into account the
amount of noise in the signal explicitly, as is done in the reliability
estimation. Thirdly, as expected, the combination of several signal
quality measures improves the accuracy of the reliabilty estimates.
Lastly, a note of caution is in order, as the accuracy results provided
effectively bundle together performance of the measures on false ac-
cepts, false rejects, correct accepts, and correct rejects. Depending
on prior values and training/testing set structure, the confidence and
reliability measures will perform differently in some regions.

5. CONCLUSIONS

We have compared various approaches to automatically evaluate the
uncertainty in a classifier’s decision, and have shown that in the case
of speech it is important to take the environmental conditions into
account when mismatch is expected between training and testing en-
vironments. We proceeded to highlight the differences between the

method clients imps. mean

CM1 trained on clean data 68.9% 49.7% 59.3%
CM1 trained on noisy data 85.8% 47.0% 66.4%
CM3 trained on clean data 50.1% 70.4% 60.3%
CM3 trained on noisy data 87.1% 22.7% 54.9%
reliability QM = (QM1) 69.8% 92.3% 81.0%
reliability QM = (QM1, QM2) 73.0% 92.2% 82.6%

Table 1. Accuracy of reliability and confidence estimation for clients
and impostors

classical confidence and reliability approaches: easy integration of
several signal quality measures, no Gaussian assumption on score
or quality measure distributions, training focussed on classifier be-
haviour, and interpretability of the measure. The reliability mea-
sure performed well on a 295-users database to which babble-type
noise was added. For biometric authentication tasks, the accuracy
is sufficiently high that a decision most likely to be unreliable can
be deferred to a human operator when available, a reacquisition can
be performed, or a second modality be used. In forensic cases the
reliability approach can be used to provide additional information
about the performance of the automatic system, if the court can set
the prior on TID (which the expert has no right to decide upon).

Further work will include implementation of and comparison
with multiple-domain confidence measures.
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