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ABSTRACT

Multimodal grammars provide an expressive formalism for multi-
modal integration and understanding. However, hand-crafted mul-
timodal grammars can be brittle with respect to unexpected, erro-
neous, or disfluent inputs. In previous work, we have shown how
the robustness of stochastic language models can be combined with
the expressiveness of multimodal grammars by adding a finite-state
edit machine to the multimodal language processing cascade. In
this paper, we present an approach where the edits are trained from
data using a noisy channel model paradigm. We evaluate this model
and compare its performance against hand-crafted edit machines
from our previous work in the context of a multimodal conversa-
tional system (MATCH).

1. INTRODUCTION

Multimodal interfaces allow input and/or output to be conveyed
over multiple channels such as speech, graphics, and gesture [1, 2,
3, 4] Multimodal grammars provide an expressive mechanism for
quickly creating language processing capabilities for multimodal
interfaces supporting input modes such as speech and pen [5]. They

support composite multimodal inputs by aligning speech input (words)

and gesture input (represented as sequence of gesture symbols)
while expressing the relation between the speech and gesture in-
put and their combined semantic representation. In [6], we have
shown that such grammars can be compiled into finite-state trans-
ducers enabling effective processing of lattice input from speech
and gesture recognition and mutual compensation for errors and
ambiguities.

However, like other approaches based on hand-crafted gram-
mars, multimodal grammars can be brittle with respect to extra-
grammatical or erroneous input. For recognition, a corpus-driven
stochastic language model (SLM) with smoothing can be built in
order to overcome this limitation. This corpus can be the data
collected from using a multimodal system or data sampled from
the multimodal grammar [7]. Although the corpus-driven language
model might recognize a user’s utterance correctly, the recognized
utterance may not be assigned a semantic representation since it
may not be in the multimodal grammar. [7] introduced the idea
of using an additional stage in the finite-state multimodal language
processing cascade in which the recognized string is edited to match
the closest string that can be accepted by the grammar. Essentially
the idea is that, if the recognized string cannot be parsed, to de-
termine which in-grammar string it is most like. For example, in
Figure 1, the recognized string is mapped to the closest string in
the grammar by deletion of the words restaurants and in. In [8],
we developed further this edit-based approach to finite-state multi-
modal language understanding and show how when appropriately
tuned based on the underlying application database it can provide a
substantial improvement in concept accuracy.

In this paper, we explore learning edits from training data. This
can be thought of as a machine translation problem where we want
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ASR: show cheap restaurants thai places in in chelsea
Edits: show cheap e thai places in € chelsea
Grammar:  show cheap thai places in chelsea

Fig. 1. Editing Example

to learn how to translate from out of grammar or misrecognized
language (such as ‘ASR:” above) to the closest language the system
can understand (‘Grammar:’ above). To this end, we adopt tech-
niques from statistical machine translation [9, 10] and use statistical
alignment to learn the edit patterns. We evaluate this approach on
data from the MATCH multimodal conversational system [11] and
compare it to the handcrafted edit-based approach described in [8].
In Sections 2 and 3, we briefly describe the MATCH application
and the finite-state approach to multimodal language understand-
ing. Section 4 describes the hand-crafted edit machine approach.
In Section 5, we describe our approach to learning the edit oper-
ations using a noisy channel paradigm. Section 6 describes our
experimental evaluation, and Section 7 concludes the paper.

2. MATCH: A MULTIMODAL APPLICATION

MATCH (Multimodal Access To City Help) is a working city guide
and navigation system that enables mobile users to access restau-
rant and subway information for New York City and Washington,
D.C.[11]. The user interacts with an interface displaying restaurant
listings and a dynamic map showing locations and street informa-
tion. The inputs can be speech, drawing/pointing on the display
with a stylus, or synchronous multimodal combinations of the two
modes. The user can ask for the review, cuisine, phone number,
address, or other information about restaurants and subway direc-
tions to locations. The system responds with graphical labels on
the display, synchronized with synthetic speech output. For exam-
ple, if the user says phone numbers for these two restaurants and
circles two restaurants as in Figure 2 [A], the system will draw a
callout with the restaurant name and number and say, for example
Time Cafe can be reached at 212-533-7000, for each restaurant in
turn (Figure 2 [B]).

Fig. 2. MATCH Example
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3. FINITE-STATE MULTIMODAL UNDERSTANDING

Our approach to integrating and interpreting multimodal inputs [11]
is an extension of the finite-state approach previously described
in [6]. In this approach, a declarative multimodal grammar cap-
tures both the structure and the interpretation of multimodal and
unimodal commands. The grammar consists of a set of context-
free rules. The multimodal aspects of the grammar become appar-
ent in the terminals, each of which is a triple W:G:M, consisting
of speech (words, W), gesture (gesture symbols, G), and meaning
(meaning symbols, M). The multimodal grammar encodes not just
multimodal integration patterns but also the syntax of speech and
gesture, and the assignment of meaning, here represented in XML.
The symbol SEM is used to abstract over specific content such as
the set of points delimiting an area or the identifiers of selected ob-
jects [11]. In Figure 3, we present a small simplified fragment from
the MATCH application capable of handling information seeking
requests such as phone for these three restaurants. The epsilon
symbol (¢) indicates that a stream is empty in a given terminal.

CMD —  eie:<cmd> INFO e:e:</cmd>
INFO —  ee:<type> TYPE e:e:</type>
for:e:e e:e:<obj> DEICNP e:e:</obj>
TYPE —  phone:e:phone | review:e:review
DEICNP —  DDETPL e:area:e e:sel:e NUM HEADPL
DDETPL — these:G:e | those:G:e
HEADPL — restaurants:rest:<rest> e:SEM:SEM e:e:</rest>
NUM —  two:2:e | three:3:€ ... ten:10:e
Fig. 3. Multimodal grammar fragment
phone for these two restaurants
Speech:> O ". O
ten ]
g = lo SEM(points...)
Gesture: >
sel S
2 SEM(r12,r15)
<cmd> M phone </type> /<ng§
Meaning: >

<rest>

r12.r15 </rest> </obj> </info> </emd>
Fig. 4. Multimodal Example

In the example above where the user says phone for these two
restaurants while circling two restaurants (Figure 2 [A]), assume
the speech recognizer returns the lattice in Figure 4 (Speech). The
gesture recognition component also returns a lattice (Figure 4, Ges-
ture) indicating that the user’s ink is either a selection of two restau-
rants or a geographical area. In Figure 4 (Gesture) the specific con-
tent is indicated in parentheses after SEM. This content is removed
before multimodal parsing and integration and replaced afterwards.
For detailed explanation of our technique for abstracting over and
then re-integrating specific gestural content and our approach to the
representation of complex gestures see [11]. The multimodal gram-
mar (Figure 3) expresses the relationship between what the user
said, what they drew with the pen, and their combined meaning,
in this case Figure 4 (Meaning). The meaning is generated by con-
catenating the meaning symbols and replacing SEM with the appro-

priate specific content: <cmd> <info> <type> phone </type>

<obj> <rest> [rI2,rl5] </rest> </obj> </info> </cmd>.
For use in our system, the multimodal grammar is compiled

into a cascade of finite-state transducers [6, 11]. As a result, pro-

cessing of lattice inputs from speech and gesture processing is straight-

forward and efficient.

4. HANDCRAFTED FINITE-STATE EDIT MACHINES

A corpus trained SLM with smoothing is more effective at recog-
nizing what the user says, but this will not help system performance
if coupled directly to a grammar-based understanding system which
can only assign meanings to in-grammar utterances. In order to
overcome the possible mismatch between the user’s input and the
language encoded in the multimodal grammar (\g), we introduce
a weighted finite-state edit transducer to the multimodal language
processing cascade. This transducer coerces the set of strings (S)
encoded in the lattice resulting from ASR (As) to closest strings in
the grammar that can be assigned an interpretation. We are inter-
ested in the string with the least costly number of edits (argmin)
that can be assigned an interpretation by the grammar. This can be
achieved by composition (o) of transducers followed by a search for
the least cost path through a weighted transducer as shown below.

s" =argmin As o Aedit © Mg (1)
SES

We first describe the machine introduced in [7] (Basic Edit)
then go on to describe a smaller edit machine with higher perfor-
mance (4-edit) and an edit machine which incorporates additional
heuristics (Smart edit).

Our baseline (Basic Edit), is essentially a finite-state imple-
mentation of the algorithm to compute the Levenshtein distance.
It allows for unlimited insertion, deletion, and substitution of any
word for another (Figure 5). The costs of insertion (icost), dele-
tion (dcost), and substitution (scost) are set as equal, except for
members of classes such as price (expensive), cuisine (turkish) etc.,
which are assigned a higher cost for deletion and substitution.

W, W /scost

W, :€ /dcost
18001/ M 1 3

w; :w; /0
Fig. 5. Basic Edit Machine

Basic edit is effective in increasing the number of strings that
are assigned an interpretation but is quite large (15mb, 1 state,
978120 arcs) and adds an unacceptable amount of latency (5s on av-
erage). In order to overcome this performance problem we revised
the topology of the edit machine so that it allows only a limited
number of edit operations (at most four) and removed the substi-
tution arcs, since they give rise to O(| Y |?) arcs. For the same
grammar, the resulting edit machine is about 300K with 4 states
and 16796 arcs. The topology of the 4-edit machine is shown in
Figure 6.

Our third edit machine, Smart edit is a 4-edit machine which
incorporates a number of additional heuristics and refinements to
improve performance.
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m €:w, ficost 2 €:w; /icost

€:w, /icost
OWi € /dcos%wi € /dcos%i € MCOS&%

w; 'w; /0 w; :w; /0 w; 'w; /0 W w; /0

w; 'w; /0

Fig. 6. 4-edit machine

e Arcs were added to the edit transducer to allow for free dele-
tion of any words in the SLM training data which are not
found in the grammar. For example, listings in thai restau-
rant listings in midtown — thai restaurant in midtown.

e A common error observed in SLM output was doubling of
monosyllabic words. For example: subway to the cloisters
recognized as subway to to the cloisters. Arcs were added to
the edit machine to allow for free deletion of any short word
when preceded by the same word.

e Insertion (icost) and deletion (dcost) costs were further sub-
divided from two to three classes: a low cost for ‘dispens-
able’ words, (e.g. please, would, looking, a, the), a high cost
for special words (slot fillers, e.g. chinese, cheap, down-
town), and a medium cost for all other words, (e.g. restau-

rant, find).

e A capability was added to the edit machine to complete par-
tial specifications of place names in a single edit. For exam-
ple, if the only metropolitan museum in the database is the
metropolitan museum of art we assume that we can insert of
art after metropolitan museum.

Note that the application-specific structure and weighting of
Smart edit can be derived automatically based on the underlying
application database.

5. LEARNING EDIT PATTERNS

In the previous section, we described an edit approach where the
weights of the edit operations have been set by exploiting the con-
straints from the underlying application. In this section, we discuss
an approach that learns these weights from data (MT edit).

5.1. Noisy Channel Model for Error Correction

The edit machine serves the purpose of translating the user’s in-
put to a string that can be assigned a meaning representation by
the grammar. One of the possible shortcomings of the approach
described in the preceeding section is that the weights for the edit
operations are set heuristically and are crafted carefully for the par-
ticular application. In order to provide a more general approach, we
couch the problem of error correction in the noisy channel model-
ing framework. In this regard, we follow [12, 13], however, we
encode the error correction model as a weighted Finite State Trans-
ducer(FST) so we can directly edit ASR input lattices. Further-
more, unlike [12], the language grammar from our application fil-
ters out edited strings that cannot be assigned an interpretation by
the multimodal grammar. Also, while in [12] the goal is to translate
to the reference string and improve recognition accuracy, in our ap-
proach the goal is to translate in order to get the reference meaning
and improve concept accuracy.

We let Sy be the string that can be assigned a meaning represen-
tation by the grammar and S,, be the user’s input utterance. If we
consider S, to be the noisy version of the Sy, we view the decod-
ing task as a search for the string S that maximizes the following

equation. Note we formulate this as a joint probability maximiza-
tion in contrast to the usual conditional probability maximization
P(S4|Su).

Sy = argmaxP(Su,Sy) 2)
Sg

We then use a Markov approximation (trigram for our pur-
poses) to compute the joint probability P(Su, Sq).

S; = argmag [1Psi. selse 802,882 3

where S, = S, S5 ... Sy and Sy = S; S5 ... S

In order to construct the word alignment (S, S, ), we use the
viterbi alignment provided by GIZA++ toolkit [10]. We convert the
viterbi alignment into a bilanguage representation that pairs words
of the string S, with words of Sy. We compute the joint n-gram
model using a language modeling toolkit [14]. Equation 3 thus
allows us to edit a user’s utterance to a string that can be interpreted
by the grammar.

5.2. Deriving Translation Corpus

Since our multimodal grammar is implemented as a finite-state trans-
ducer it is fully reversible and can be used not just to provide a
meaning for input strings but can also be run in reverse to deter-
mine possible input strings for a given meaning. Our multimodal
corpus was annotated for meaning using the multimodal annotation
tools described in [15]. In order to train the translation model we
build a corpus that pairs the transcribed speech string for each ut-
terance in the training data with a target string. The target string
is derived in two steps. First, the multimodal grammar is run in
reverse on the reference meaning yielding a lattice of possible in-
put strings. Second, the closest string in the lattice to the reference
speech string is selected as the target string.

5.3. FST-based Decoder

In order to facilitate editing of ASR lattices, we represent the edit
model as a weighted finite-state transducer. We first represent the
joint n-gram model as a finite-state acceptor [16]. We then interpret
the symbols on each arc of the acceptor as having two components
—a word from user’s utterance (input) and a word from the edited
string (output). This transformation makes a transducer out of an
acceptor. In doing so, we can directly compose the editing model
with ASR lattices to produce a weighted lattice of edited strings.
We further constrain the set of edited strings to those that are in-
tepretable by the grammar. We achieve this by composing with the
language finite-state acceptor derived from the multimodal gram-
mar as shown in Equation 1.

6. EXPERIMENTS AND RESULTS

To evaluate the approach, we collected a corpus of multimodal ut-
terances for the MATCH domain in a laboratory setting from a set
of sixteen first time users (8 male, 8 female). A total of 833 user
interactions (218 multimodal / 491 speech-only / 124 pen-only) re-
sulting from six sample task scenarios were collected and anno-
tated for speech transcription, gesture, and meaning [15]. These
scenarios involved finding restaurants of various types and getting
their names, phone numbers, addresses, or reviews, and getting sub-
way directions between locations. The data collected was conver-
sational speech where the users gestured and spoke freely.
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ConAcc | Rel Impr
No edits 38.9% 0%
Basic edit 51.5% 32%
4-edit 53.0% 36%
Smart edit 60.2% 55%
Smart edit (lattice) | 63.2% 62%
MT edit 50.3% 29%

Fig. 7. Results of 6-fold cross validation

ConAcc
Smart edit 67.4%
MT edit 61.1%

Fig. 8. Results of 10-fold cross validation

Since we are concerned here with editing errors out of disflu-
ent, misrecognized or unexpected speech, we report results on the
709 inputs that involve speech (491 unimodal speech and 218 mul-
timodal). Since there are only a small number of scenarios per-
formed by all users, we partitioned the data six ways by scenario.
This ensures that the specific tasks in the test data for each partition
are not also found in the training data for that partition. For each
scenario we built a class-based trigram language model using the
other five scenarios as training data. Averaging over the six par-
titions, ASR sentence accuracy was 49% and word accuracy was
73.4%.

For the purpose of evaluating concept accuracy, we used an ap-
proach similar to [17, 18] in which computing concept accuracy is
reduced to comparing strings representing meaning. We extract a
sorted flat list of attribute value pairs that represents the core con-
tentful concepts of each command from the XML output. The ex-
ample in Figure 4 yields the following meaning representation for
concept accuracy: cmd:info type:phone
object:selection. In order to evaluate the concept accuracy
provided by the different edit machines, for each partition of the
data we first composed the output from speech recognition with the
edit machine and the multimodal grammar, flattened the meaning
representation, and computed the exact string match accuracy be-
tween the flattened meaning representation and the reference mean-
ing representation. We then averaged the concept string accuracy
over all six partitions.

The results are tabulated in Figure 7. The columns show the
concept string accuracy and the relative improvement over the the
baseline of no edits. Compared to the baseline of 38.9% concept
accuracy without edits (No Edits), Basic Edit gave a relative im-
provement of 32%, yielding 51.5% concept accuracy. 4-edit fur-
ther improved concept accuracy (53%) compared to Basic Edit.
The heuristics in Smart Edit brought the concept string accuracy
to 60.2%, a 55% improvement over the baseline. Applying Smart
edit to lattice input improved performance from 60.2% to 63.2%.

The MT edit model yielded concept accuracy of 50.3% a 29%
improvement over the baseline with no edits. It is very likely that
there is insufficient training data for the MT edit model. Also, MT
edit may not do well with the 6-fold split by scenario as it is more
sensitive to the specifics of each scenario. To examine this further
we re-ran the MT evaluation and Smart edit with a more typical
10-fold random split cross validation (Figure 8). The MT edit did
substantially better with the 10-fold cross validation (61.1%) but
still significantly less than the handcrafted edit model derived from
the application database.

7. CONCLUSIONS

In previous work, we have shown how finite-state edit machines can
dramatically improve the robustness of multimodal understanding.
In our prior work the best performing edit machine incorporated
heuristics derived from the underlying application database. In this
paper, we take a different approach, viewing the editing as a trans-
lation process from language the system cannot handle to the clos-
est language it can. The MT edit approach provides a substantial
improvement over the baseline (29%), performing similarly to the
Basic edit machine, but does not do as well as the application-tuned
Smart edit machine. This leads us to conclude that, given the lack
of data for multimodal applications, a combined strategy may be
most effective. For initial deployment the underlying application
database can be leveraged to build an edit machine to improve sys-
tem performance. As data is collected the MT edit approach can be
brought into play in order to further improve performance, as sug-
gested by the 10-fold evaluation. In ongoing work we are examin-
ing techniques for combination of the data-driven and application-
tuned edit approaches described here.
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