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ABSTRACT

This work explores a new way of fusing audio and visual
information for audio-visual automatic speech recognition in
the context of a large vocabulary application. Mouth shape
information is extracted off-line and integrated into a speech
recognition system using a phoneme-based Dempster-Shafer
fusion approach. The fusion methodology assumes that the
audio information about the phonemes is a precise Bayesian
source while the visual information is an imprecise
evidential source. This ensures the visual information does
not degrade significantly the audio information in situation
where the audio performs well in controlled noiseless
environment. Bayesian and simple consonance belief
structures are explored and compared, along with standard
stack-based fusion.

1. INTRODUCTION

This paper deals with the problem of improving audio-only
speech recognition performances using low level visual
clues. The main objective is to decrease the Word Error
Rate (WER) of a speech recognition system when audio
acquisition conditions are poor and the resulting Signal to
Noise Ratio (SNR) is low. Most of the recent Audio-Visual
Automatic Speech Recognition systems (AV-ASR) can be
split into two main fusion categories: (1) feature-based or
stack vector-based fusion, where visual features are simply
concatenated with the audio features and (2) decision based
fusion, where fusion is performed at higher level [6][7].
Most works use linear representations and a strict Bayesian
framework. Unlike those works, our approach makes use of
a decision fusion process based on the Dempster-Shafer
(DS) theory [8].

Visual evidence is highly imprecise compared to audio
mainly because most of the articulators involved in speech
production are not visible (tongue body, velum, glottis).
Visual evidence is also impaired by coarser sampling rate
(usually three audio frames for one visual), variations of the
head pose and the mouth appearance. Visual and audio
information are thus strongly heterogeneous data.

The DS theory [8] offers a very powerful framework for
fusion of heterogeneous data. It is being applied to various
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data fusion problems [1][3]. In particular, an extension of
this theory, called Transferable Belief Model (TBM), offers
an even more flexible framework [3]. Recently, it has been
proposed to use the DS theory to fuse decisions from an
imprecise information source (modeled by an evidential
mass function) with a precise source (modeled by a Bayesian
probability) [1]. This approach has the advantage of
producing a Bayesian mass function which can be further
handled by standard Bayesian algorithms. Following this
idea, we model the visual information by an evidential mass
function while the audio information remains a Bayesian
mass function. Some concepts of the TBM framework are
exploited such as the ballooning extension and the
conjunctive rule of combination [3].

The paper is organized as follows. Section 2 briefly
exposes the visual learning approach which is based on the
training of a set of binary classifiers using a Kernel Linear
Discriminant Analysis (KLDA) [9]. Section 3 describes our
DS-based fusion approach along with the visual information
mass functions assignment we have tested; Bayesian and
simple consonance. Section 3 also describes how the
Bayesian audio phoneme likelihoods are merged with the
visual phoneme evidence using the conjunctive TBM rule.
Section 4 presents results on a large dataset of French
Canadian broadcast news readings. Finally, we conclude and
identify possible extension to our work.

2. VISUAL LEARNING

The visual learning aims at classifying mouth shapes related
to particular phonemes or set of phonemes. Visual learning
is difficult because of the high wvariability in the visual
content. Mouth shape variations due to different phonemes
are rather small compared to other sources of intra-subject
variability like head pose variations, tracking errors and
pronunciation variations. In the French speaking language,
36 phonemes are usually used. Clearly, distinct phonemes do
not necessarily have corresponding distinct visual classes.
Based on the mouth appearance only, phonemes are often
grouped into few classes of visual phonemes called visemes.
Single phonemes are not atomic representations and are
heavily dependent on the context. Thus, groups of three
phonemes (triphones) are usually considered in most speech
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recognition algorithms [6]. However, due to practical
limitations (e.g. not enough triphones in our database to train
a triphone-based classifier; which are about tens of
thousands for the French language), we retained the
phoneme-based visual learning approach as a trade-off
between the viseme and the triphone approaches, with the
hope that our DS decision-based fusion algorithm can
compensate by adapting the confidence level according to
the context.

2.1. Visual Feature Formation

Visual feature extraction is based on an open source
program developed by Intel and which is part of the library
OpenCV [5]. The face and mouth detection are first done by
a boosted cascade of classifiers using Haar-like features.
Then, a Kalman filter tracks the detected mouth window
from which we derive a greyscale vector of dimension 160
(10x16 pixels). In order to reduce the impact of lighting
conditions, each feature was centered on the mean feature
vector of each speaker. A projection was finally done onto a
PCA subspace containing 95% of the total feature variance
as a way of keeping a good learning robustness. The
resulting low-level visual feature vector is of dimension 54.

2.2. Kernel Based Learning

Kernel-based learning techniques are efficient in describing
high-dimensional non-linear manifold using Kernel PCA
(KPCA) [9]. The kernel functions in KPCA allow for non-
linear extensions of the linear feature extraction methods.
The input vectors x € R" are mapped into a new higher-
dimensional feature space F, using a mapping function
¢ : R" — F, in which the linear methods are applied. One

major drawback of Kernel-based learning is the size of the
Gram matrix which increases in function of the number of
training samples. Therefore, training on large datasets is
prohibitive. In particular, multi-class KLDA with a large
number of classes requires a large number of samples per
class. Consequently, solving the generalized eigenvalue
problem required by LDA is usually beyond actual
computational power. We rather trained a set of pairwise
binary classifiers instead of dealing directly with the multi-
class problem. Once the pairwise classification is done we
only need to combine N =|Q"|x(|Q"|—1)/2 binary
decisions to form a likelihood vector on the original set of
visual classes (2. A simple voting algorithm is then used to
build a histogram for each decision [4].

3. FUSION METHODOLOGY

3.1. Transferable Belief Model

The core element of the TBM is the basic belief assignment
(or mass) function m(). The mass function assigns a belief on

the subsets of the set Q = {w; f‘il constituted by M
mutually exclusive hypotheses w;. Based on the available
evidence (the facts) E, the mass function is defined by

me[E]() : 2% — [0,1] with EngzmQ[EKB) =1 (1)

where 2 denotes the set of all subsets of Q (the power set).
In the DS theory, an additional normalization is imposed to
ensure that the null hypothesis has a null belief
(m(2) = 0). The TBM does not require this. We call focal

set (noted F) the set of subsets of 2 having a non-null
mass, ie.F ={ACQ|m"[E](A)>0}. The Dbelief

function bel() is defined as

bel : 2 —[0,1] with bel(A) = > m"[E](B),YACQ(2)

@=BCA

The degree of belief bel(A) represents the amount of
justified and specific degree of support to the hypothesis 4.
The plausibility function p/(4) is the degree of support that
could be attributed to 4 but can also support another subset:

pl: 2% — [0,1] with pl(4) = >~ m?[E](B),YA C Q(3)
BNA=o
The two quantities bel(A4) and pl(A) are often interpreted
as a lower and upper bound of an unknown probability
measure P on A4. In addition, the difference pl(4) - bel(A4) is

an indicator of the degree of knowledge imprecision on
P(A).

3.1.1. The Ballooning Extension

The ballooning extension is a useful concept when belief is

available on a subset Q' of the full set of hypothesis 2. This

happens, for instance, when beliefs are built on a limited set

and one discovers afterwards that alternatives had not been

considered. In particular, this extended mass function
produces a new plausibility function:

(4), itACQ

o104 =" o - @

1, ifAcCQ

We use this principle to extend the visual beliefs on the
phoneme subset Q" = Q\ {G,N ~} to the full set of

phonemes 2 (" C ). This is useful because the G and

N~ phonemes are rare in the French language and we do not
have enough samples to properly learn them.

3.1.2. Mass Function Construction
As proposed in the statistical evidential theory [8], we
simply construct mass functions from observed likelihoods
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Different mass functions can be

{p(= | Wi)}q;:L...ﬁM'

constructed depending on the type of partition on € [8][10].
The two limiting cases are:
- the simple consonant belief function [8]:

maﬁy{p(x | w;)}

bel[E](w;) =1— =0 _VYw. eQ (5
CEN) = e Ty ™ €2 O

w; €N

- the Bayesian belief function:
bel[E)(w;) = M,ij cQ ©6)

S ol | @)
k=1

3.2. Application to AV-ASR

In the literature [6][7], the HMM state-dependent emission
of an audio-visual observation vector is represented by a
direct product of the probability for each audio frame # and
the HMM context dependent state c:

P(Otw,f, ‘ C) = P(Oaﬁt | C))\M't P(O'U,t | C))\M‘tvvc el (7)

where A, ; (A,.;) is the reliability factor and o,; (o,;)
are the observed low-level feature vectors for the audio
(resp. visual) source. The non-negative reliability factors
control each modality contribution. Usually, ¢ is a context-
dependent phoneme (¢ = {w;,w;,w; }) and is modeled
using a Markovian method. For the visual information, the
likelihood is not contextual ( P(o,,; | ¢) = P(o,; | w;) ).
Here, we propose to formulate (7) within the evidential
framework, i.e. using Dempster’s rule of combination:

m*[a,v](c) = (m"a] ® m®[v])(c) ®)

where m“[a] (resp. m‘[v]) is the mass function associated
to the audio (resp. visual) information and m®[a,v] is the
combined audio-visual mass. We assume that the audio
modality is a precise Bayesian source
(m®a](c) = P(o,, | c)) so that the audio mass function is

directly the observed audio likelihood. The audio-visual
mass function (8) with the reliability coefficients becomes

A
m*[a,v](c) = P(og; | )™ [pl®[v](c)] 9)
Equation (9) can be seen as a generalization of (7). We
still need to express the visual plausibility function for the
chosen belief structures. We give here the results for the
Bayesian and simple consonance. We assume known a set of

hypothesis Q' = {w(l),...,w(M)} resulting from the

ordering of the hypothesis w; € €} according to a set of
observed likelihoods p(w™®) > p"(wW?) > ... > p"(w™).

3.2.1. Bayesian Mass Function
In this case, the focal set is F' = ) and the mass function is
given by (6). Applying the ballooning extension (4) we get,
forall A € Q,
0 LifAeQ’
pl(4) =1 (10)
m' [v](4), if A€ QY

3.2.2. Simple Consonant Mass Function
In this case, the focal set is F = {w(l),Q} and the visual

mass function is given by (5):

B —pi“"ifi ) 4=

m ey =f 70 1)
p (wl )7A — Q'U
P ()

After applying the ballooning extension we obtain, for
all A € Q, the visual plausibility function:

) LifdewVuQ”
pl[v](4) = —_ (12)
m [w)(QY), it A ¢ WV UQ

4. RESULTS

Our speech corpus consists of 740 distinct television news
utterances read by 26 native French Canadian speakers. The
AV data were collected in-house and totalize 4.5 hours of
upper body frontal color video of 380x540 pixels at 30 fps.
The audio data is sampled at 16 kHz and linearly quantized
to 16 bits with a SNR=26dB. The first 10 MFCC are
extracted every 100 ms and combined with their first- and
second- time-derivative to form an audio feature vector of
dimension 30. For stack-based fusion, second-time
derivatives are replaced by 10 visual features. For each
subject, 20% of the data was kept as test and 80% as
training. A subset of the test set, but limited to 6 subjects,
was also used as a development set to tune the training
parameters. Training was done using clean audio data within
a multi-speakers and speaker-independent framework, i.e.
the same subjects were used in training and testing but
training and testing utterances were distinct. Noisy versions
of the test data were generated by adding speech babble.
The fusion of probabilities along the lines described in
Section 3.2 was done within the CRIM’s speech recognition
system which is based on Hidden Markov Models (HMM)),
Gaussian mixtures, and N-gram language model [2][11].
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Note that results are reported for recognition in
unmatched conditions, since models were trained on clean
data only. WER performance on the test set for the clean (26
dB) and noisy data (18.9 dB, 13.8 dB, 9.55 dB) are given on
Figure 1. Four types of fusion approaches have been tested:
(1) decision-based simple consonance, (2) decision-based
Bayesian, (3) stack-based (with KLDA components), and (4)
combination of stack- and decision-based simple
consonance. The best results have been obtained with the
last approach giving a WER reduction from 82% to 67% at
9.55 dB noise, or an equivalent gain of 4 dB for the SNR.
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Figure 1: Average WER on test data for babble noise

It is difficult to compare our results to other published works
as the application area (large French vocabulary of high
perplexity) and/or the dataset are different. In [6][7], the
authors report WER reduction on a large vocabulary English
recognition application from 48% (audio only) to 35% (with
AV fusion) at 10 dB noise. We get a similar relative
reduction in our case (81% to 65%). This is rather
encouraging taking into account that (1) we have used
simple, and maybe not optimal mass functions and (2) did
not take into account the contextual visual information.
Regarding the higher WER we have for the clean data, one
can say that this value is very dependent on the dataset and
the acoustic and language models. Furthermore, we did not
use any complex data pre-processing like MLT, KLDA or
clean/noisy data mismatch correction technique in our
speech recognition system.

5. CONCLUSION
We have reported about the use of DS and TBM probability

theories as fusion approach for AV-ASR of large
vocabularies, with application to French Canadian speech.

The evidential framework, and in particular the TBM theory,
offers many advantages: (1) possibility to extend mass
functions to a larger set of hypothesis (ballooning
extension), (2) manipulation of non-singleton hypothesis,
and (3) modeling of the global imprecision. We have chosen
a statistical evidence framework mainly because it produces
simple and efficient mass functions that are easily
combinable. This leads to performance results on WER that
are encouraging and comparable to other published results.

To our knowledge, our work is the first to address AV-
ASR of French Canadian speech. It also deals with a large
vocabulary application which is still an open research issue
for any language. As a contribution to this field, we will
soon release on the Web our audio-visual database for
research activities.
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