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ABSTRACT

We propose an articulatory approach which is capable of converting
speaker independent continuous speech into video-realistic mouth
animation. We directly model the motions of articulators, such as
lips, tongue, and teeth, using a Dynamic Bayesian Network (DBN)-
structured articulatory model (AM). We also present an EM-based
conversion algorithm to convert audio to animation parameters by
maximizing the likelihood of these parameters given the input au-
dio and the AMs. We further extend the AMs with introduction of
speech context information, resulting in context dependent articula-
tory models (CD-AMs). Objective evaluations on the JEWEL test-
ing set show that the animation parameters estimated by the pro-
posed AMs and CD-AMs can follow the real parameters more accu-
rately than that of phoneme-based models (PMs) and their context
dependent counterparts (CD-PMs). Subjective evaluations on an AV
subjective testing set, which collects various AV contents from the
Internet, also demonstrate that the AMs and CD-AMs are able to
generate more natural and realistic mouth animations and the CD-
AMs achieve the best performance.

1. INTRODUCTION

Computer animated talking faces entertain humans in various multi-
media applications, such as virtual agents, newsreaders, video games,
and videophones. Different from text-driven ones which use synthe-
sized voices with few prosody, speech-driven talking faces are capa-
ble of converting real speech to facial animations with high fideli-
ties of both audio and video. The essential problem of speech-driven
talking faces is mouth-synching: the synchronization of the animated
mouth with speech. Various approaches have been proposed [1],
which generally can be categorized to physics-based, sample-based,
and statistical-model-based. Even a mouth animation system with-
out the corresponding face still can help hearing impaired people to
better communicate with machines through lipreading.

Recently, due to the success in modelling speech, many research-
ers have used hidden Markov models (HMMs) to solve the mouth-
synching problem. Some of them converted speech into linguistic
units (such as phonemes) using an HMM-based Viterbi recognizer,
and mapped these units to pre-defined mouth animation parame-
ters [2]. Others directly estimated the visual parameters from acous-
tic speech and bypassed the Viterbi search which was considered
as lack of robustness to ambient noise. Choi et al [3] presented a
Baum-Welch HMM inversion approach, which trained audio visual
phoneme HMMs (we call this model PM) and animation parameters
were directly generated by Baum-Welch iterations.
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Although these HMM-based approaches can provide reasonable
mouth-synching performance, they still lack natural audio visual syn-
chronization compared with real recordings. This is probably be-
cause these approaches adopt the conventional phoneme-based speech
modelling schemes, which does not incorporate any knowledge of
the source that articulates speech.

In this paper, we present an articulatory approach to realize video-
realistic mouth animation. We directly model the movements of ar-
ticulators, such as lips, tongue and teeth, using articulatory mod-
els (AMs). Speaker independent continuous speech is converted to
mouth animation based on an EM-based conversion algorithm. As
autosegmental phonology indicates [4], speech may be better de-
scribed by asynchronous motion of articulators than by rigid line-up
of phonemes. Articulatory modelling has many advantages such as
being better able to predict coarticulation effects. Therefore, a mouth
animation system may benefit from directly describing the action of
articulators and achieve more realistic performance.

2. ARTICULATORY MODELS

2.1. Model Structure

Articulators are formally known as speech organs such as glottis,
vocal folds, velum, lips and tongue. During the last decade, there has
been much interest in modelling articulators for speech. Recently,
due to the great expressive power of Dynamic Bayesian Networks
(DBNs) in modelling speech phenomena, Bilmes et al. [5] proposed
a prototype of DBN-based articulatory model for speech recognition.
We extend this model to solving mouth-synching problem.

Fig. 1 shows the repeating structure of our articulatory model
(AM), where two successive time frames are given. Similar to that
in [5], a layer representing various articulators is inserted between
linguistic states and observation variables. In each frame t, there is a
set of articulators Ψt = {ψ1

t , ψ1
t , · · · , ψD

t }, each of which depends
on the current state variable qt and its own value in the previous
frame. The time dependency between successive articulator values
is to model the natural continuity constrains.

Different from [5], our model removes the complicated syntax
layers for word decoding, since we are not interested in the syn-
tax the utterance conveys, but how the visual observations match
the acoustic speech. Another difference is that our model includes
two observation streams (oa

t and ov
t ) each of which describes one

modality of speech–audio and video. Since the audio and visual
observations are originated from the same articulator source, only
a unique articulator layer is incorporated. As several articulators
such as velum cannot be observed visually, visual observations are
up-linked only to those visible articulators. Not only does this multi-
stream structure mimic the true human articulatory system to a cer-
tain extent, but also encapsulates the synchrony between the audio
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and video and the asynchrony between different articulators; and
thus may lead to a better mouth-synching performance.

2.2. Model Parameters

The conditional probability distributions (CPDs) associated with vari-
ables for each frame describe the following probabilities:

• P (qt|qt−1): state transition probability,

• P (ψi
t|ψi

t−1, qt), i = 1, 2, · · · , D: articulator generation prob-
ability, and

• P (os
t |Ψs

t ), s ∈ {a, v}: audio (visual) observation emission
probability.

Since qt and ψi
t are discrete variables, the probabilities P (qt|qt−1)

and P (ψi
t|ψi

t−1, qt) are described in a tabular way, known as condi-
tional probability tables (CPTs). P (os

t |Ψs
t ) is described as Gaussian

mixtures:

P (os
t |Ψs

t ) =

K∑
k=1

ωΨs
t kN (os

t ; µΨs
t k,ΣΨs

t k) s ∈ {a, v}, (1)

where N (os
t ; µΨs

t k,ΣΨs
t k) is a multivariate Gaussian with mean

vector µΨs
t k and covariance matrix ΣΨs

t k, and ωΨs
t k denotes the

mixture weight for the kth Gaussian. Each allowed combination of
articulator values is implemented via a Gaussian mixture.
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Fig. 1. Articulatory Model

2.3. Articulator Variables and Parameter Training

Speech production is a complicated process which involves various
articulators. Prior to modelling, we must consider what articulatory
information can be encapsulated. We use pseudo-articulatory infor-
mation since they are widely used in the speech processing literature
where statistical classifications are applied to acoustic speech, result-
ing in abstract classes representing articulator configurations.

According to [6], we define our articulator variables (with dis-
crete values) as follows1: voicing (on, off), velum (open, closed),
manner (closure, sonorant, fricative, burst), lip rounding (rounded,
slightly rounded, mid, wide), tongue show (touching top teeth, near
alveolar ridge, touching alveolar, others), teeth show (on,off).

In order to constrain the articulatory variables to their intended
meanings, we use a two-step parameter training procedure. Firstly,
we train the articulator generation probabilities P (ψt|ψi

t−1, qt) us-
ing probability factoring and supervised learning; secondly, we train
the state transition probabilities P (qt|qt−1) and the observation emis-
sion probabilities P (os

t |Ψs
t ) using the EM algorithm together with

the pre-trained articulator generation probabilities.

1Lip rounding, tongue show and teeth show are visible articulator vari-
ables

To get a reasonable guess of P (ψi
t|ψi

t−1, qt), we factor it into
the following form:

P (ψi
t|ψi

t−1, qt) =
P (ψi

t|qt)P (ψi
t|ψi

t−1)

N(ψi
t)

. (2)

Thus we build two separate CPTs for:

• P (ψi
t|qt): state-to-articulator mapping probability and

• P (ψi
t|ψi

t−1): articulator transition probability.

The final CPT of P (ψi
t|ψi

t−1, qt) is constructed by multiplying the
appropriate items in the above two CPTs and normalized by a con-
stant N(ψi

t).
Since we use 47 English phonemes as the linguistic units, we

manually examine each phoneme state’s articulatory characteristics
to determine the best mapping to the articulator values and created
a phoneme-state-to-articulators mapping table [7]. Based on this ta-
ble, we use a supervised learning method [7] to train P (ψi

t|qt) and
P (ψi

t|ψi
t−1).

3. EM-BASED AUDIO TO VISUAL CONVERSION

Since our DBN-structured articulatory model is to output appropri-
ate visual parameters given the only audio input, we need an audio
to visual conversion algorithm based on an optimal criterion. We
use the Maximum Likelihood (ML) criterion to find the optimal vi-
sual parameters Ôv , maximizing the likelihood of visual parameters
given the audio data Oa and the trained articulatory models λ. The
EM algorithm is used in our ML approach.

According to the EM algorithm, the optimal visual parameter
sequence Ôv can be found by iteratively maximizing the auxiliary
function Q(λ, λ;Oa,Ov,Ov′

), i.e.,

Ôv = arg max
Ov

′ ∈Ov

Q(λ, λ;Oa,Ov,Ov′
), (3)

where Ov and Ov′
denote the old and new visual parameter se-

quences in the visual parameter space Ov respectively.
As described in EM, given the model with audio visual obser-

vation streams Oa and Ov in Fig. 1, the complete-data likelihood
function is P (Oa,Ov, q, Ψ|λ). Given Ψ and q and a trained model
set λ, according to the Markov property of independent relationships
between variables, the complete-data likelihood can be formed as

P (Oa,Ov, q, Ψ|λ)

=
T∏

t=1

[
P (qt|qt−1)

D∏
i=1

P (ψi
t|ψi

t−1, qt)P (oa
t |Ψa

t )P (ov
t |Ψv

t )

]
.(4)

Then Q(λ, λ;Oa,Ov,Ov′
) can be expressed as

Q(λ, λ;Oa,Ov,Ov′
)

=
∑

q

∑
Ψ

P (Oa,Ov, q, Ψ|λ) log P (Oa,Ov′
, q, Ψ|λ)

=
∑

q

∑
Ψ

P (Oa,Ov, q, Ψ|λ){
T∑

t=1

log P (qt|qt−1)

+
T∑

t=1

D∑
i=1

log P (ψi
t|ψi

t−1, qt)

+

T∑
t=1

log P (oa
t |Ψa

t ) +

T∑
t=1

log P (ov′
t |Ψv

t )}. (5)

By taking the derivative of Q(λ, λ;Oa,Ov,Ov′
) with respect to
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ov′
t to zero, i.e.,

∂Q(λ, λ;Oa,Ov,Ov′
)

∂ov′
t

=
∑

q

∑
Ψ

P (Oa,Ov, q, Ψ|λ)
∂

∂ov′
t

[
log P (ov′

t |Ψv
t )

]

=
∑
qt

∑
Ψt

∑
k

P (Oa,Ov, qt,Ψt|λ)ωΨv
t kΣ−1

Ψv
t k(ov′

t −µΨv
t k)=0,(6)

where qt and Ψt (Ψv
t ⊂ Ψt) denote possible values of state variable

and possible value sets of articulatory variables at time t respectively.
We define

γt(qt, Ψt) = P (Oa,Ov, qt, Ψt|λ) (7)

as the occupation probability. We can find the re-estimated inputs
ov′

t by iteratively computing Eq. (8) until convergence.

ov′
t =

∑
qt

∑
Ψt

∑
k γt(qt, Ψt)ωΨv

t kΣ−1
Ψv

t kµΨv
t k∑

qt

∑
Ψt

∑
k γt(qt, Ψt)ωΨv

t kΣ−1
Ψv

t k

. (8)

The occupation probabilities γt(qt, Ψt) can be computed using the
frontier algorithm [8].

4. CONTEXT DEPENDENT ARTICULATORY MODELS

For continuous speech with a large vocabulary, context dependent
speech units, known as triphones and biphones, are better used. More
accurate relationships between articulators and speech observations
can be modelled using the context information although no direct de-
pendency exists between the linguistic states and the speech obser-
vations in our model(see Fig. 1). This is because context dependent
modelling can categorize speech into more accurate speech atoms,
and the training data for the observation emission probabilities will
thus become more accurate.

Jewel Audio

Jewel Video

Audio Feature Extraction

Visual Feature Extraction

Train AMs

Joint AV

Feature

Make CD-AMs

Train CD-AMsTrain Audio CD-AMs

TIMIT AudioJewel Audio

CD-AM Set

Fig. 2. Training procedure for CD-AMs

Fig. 2 shows the training procedure for the context dependent
articulatory models (CD-AMs). We use the TIMIT speech database
and the JEWEL audio-visual database [9] in the training since our
object is to achieve speaker independent mouth-synching and abun-
dant audio samples from various speakers are needed to get good
distributions of acoustic signals. we use MFCCs as well as their ve-
locity and acceleration derivatives as audio features, leading to a set
of 39 parameters for each frame. The principal component analy-
sis (PCA) is implemented to the R, G, and B channels of JEWEL
mouth images separately, generating a set of 90 visual parameters
(30 for each channel) for each image frame. We up-sample visual
parameters from 25Hz to 100Hz to meet the audio feature rate.

Firstly we use synchronized audio-visual features extracted from
the JEWEL training set to train AMs. This training process ensures
the synchronization of the audio and visual signals. Secondly, we
convert the phoneme-based transcriptions to equivalent word inter-
nal triphone and biphone transcriptions. For example, a phoneme se-
quence of “· · · w ao sh sp w ao t axr · · · ” is converted to “· · ·w+ao
w-ao+sh ao-sh sp w+ao w-ao+t ao-t+axr t-axr · · · ”. Totally we col-
lect 3932 context dependent units (triphones, biphones and phonemes).

Correspondingly, the state-to-articulator mapping probability for the
new CD-AM is
P CD(ψi|q = ξj)

=
J∑

j=1

ajP (ψi|q= lj)+bP (ψi|q=pj)+
J∑

j=1

cjP (ψi|q=rj), (9)

where ξ denotes a J-state CD-AM with the form l− p + r, and∑
j aj + b +

∑
j cj = 1. This new mapping probability is designed

to introduce the co-articulation effects from the neighboring sounds.
The weights a, b, c are experientially chosen from a development set.

Finally we use the TIMIT training audio together with the JEWEL
training audio (totally 5072 utterances) to train the audio observation
emission probabilities of CD-AMs (P (oa

t |Ψa
t )), while keep the vi-

sual observation emission probabilities (P (ov
t |Ψv

t )) unchanged.

5. EXPERIMENTS

To evaluate the performance of the proposed articulatory approach,
we have carried out objective and subjective experiments. We have
compared our technique with Choi’s phoneme-based model (PM) [3]
and its context dependent counterpart (CD-PM), since they all di-
rectly estimate visual parameters from acoustic speech, and use sim-
ilar audio to visual conversion mechanisms.

Although the proposed EM-based conversion algorithm in Sec-
tion 3 is able to estimate visual parameters using all possible lin-
guistic states (all qt), the computing is time-consuming. We instead
used a sub-optimal approach that an N-Best state list was computed
for each utterance frame by a separate speech recognizer built by the
HTK toolkit [10]. As a result, only the N most likely states were in-
volved in the estimation iterations (Eq. (8)) and the computing time
was significantly reduced with a comparable performance.

We trained a set of 47 three-state,left-to-right phoneme HMMs
for the PM system and correspondingly a set of 3932 context depen-
dent HMMs with the same structure for the CD-PM system. The N-
Best state lists were also used in their HMMI-based conversion [3].
For the AM and CD-AM system, considering the physical constraints
of the articulators and the database context, we trained 472 and 236
sets of Gaussian mixtures for the audio and visual respectively. For
all the testing systems, a five-continuous-Gaussian-mixture was used
for each HMM state or each combination of articulator values.

5.1. Objective Evaluations

We have carried out objective evaluations on the testing set of JEWEL
database. Fig. 3 depicts the estimated visual parameter time trajecto-
ries (the most significant PCA component for the R channel), com-
pared with the actual parameters extracted from the original video
for a testing sentence. The curves show that all the testing systems
were able to generate visual parameter sequences that follow the ap-
proximate shapes of the actual parameter curves. However, the PM
system produced obvious estimation errors. For example, large er-
rors lie in the neighborhoods of frame 52, 75 and 275. By taking ac-
count of the context information, the CD-PM system was observed
reduced errors. The curve generated by the proposed AM system
was able to follow the actual one more closely, and the best matching
performance was achieved by the CD-AM system. This is mainly
because our articulatory approach can describe better the coarticula-
tion effect than the conventional phoneme-based approaches tested.

To make quantitative evaluations, we have calculated the per-
centage normalized mean error (PNME) on the whole testing set.
The PNME is defined as

PNME =

∑72
k=1

∑Ik
i=1

∑90
j=1

∣∣∣Ĉijk − Cijk

∣∣∣∑72
k=1 Ik × 90

× 100%, (10)
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Table 1. PNMEs for the 4 testing systems

System PM CD-PM AM CD-AM
PNME 10.12 9.04 8.87 8.24

Table 2. Subjective evaluation results

Score (5=Excellent, 1=Bad) Average
System

5 4 3 2 1 (MOS)
PM 2 7 10 7 4 2.9

CD-PM 10 8 8 1 3 3.7
AM 12 8 7 3 0 4.0

CD-AM 16 5 8 1 0 4.2

where Ik denotes the frame number of sentence k (totally 72 testing
sentences). Cijk and Ĉijk denote the jth actual and estimated visual
parameter after normalization for frame i in sentence k respectively.
The calculated PNMEs for the 4 testing systems are shown in Ta-
ble 1. As can be seen clearly, the proposed AM and CD-AM can
effectively reduce the estimation errors in terms of PNME as com-
pared with the conventional phoneme-based models (PM and CD-
PM). Especially, the CD-AM system reduced PNME by as much as
19% as compared with the PM system. Analysis shows that many
large estimation errors of the PM and CD-PM systems occur during
the onset, offset of speech due to their lack of good prediction of
coarticulation, leading to higher PNMEs. The results show that di-
rectly model articulatory motions can achieve visual parameters that
match well with the actual ones extracted from the original videos.

5.2. Subjective Evaluations

To subjectively evaluate the performance of the proposed approach,
we built an AV subjective testing set. We collected 30 AV snippets
with lengths from 15 secs to 100 secs from the Internet concerning
contents from different subjects about news reports, distinguished
speeches, weather reports, news briefing, etc. We synthesized each
mouth video from the corresponding data set audio using the 90 es-
timated PCA coefficients. The synthesized mouth videos were over-
laid onto the original videos (see Fig. 4), and 10 relatively inexperi-
enced viewers were involved to rank the performance of the mouth
animation in terms of naturalness of the mouth matching the audio
accompanied. We used a five-point assessment, where 5 means “ex-
cellent” and 1 means “bad”.

Table 2 summarizes the average scores over the 10 viewers. It
shows that the viewers give relatively high scores to the synthesized
videos generated by the AM and CD-AM systems, and the CD-PM
system can achieve comparable performance with the proposed AM
system. But with the introduction of context modelling, the pro-
posed CD-AM system performs the best with a mean opinion score
(MOS) of 4.2. Averagely, 16 synthesized videos generated by the
CD-AM system were given the highest score. Analysis shows that
for the PM and CD-PM systems, lower scores are more likely given
to the relative longer videos, and this indicates that unnatural arti-
facts are more easily detected by the viewers in a long time period.
Some synthesized mouth animation videos can be found online at
http://www.cityu.edu.hk/rcmt/mouth-synching/mouth-synching.htm.

6. CONCLUSIONS

We present a novel articulatory approach to video-realistic mouth
animation. Motivated by the fact that speech-related facial anima-
tion is originated by articulation, we directly model the articulator
motions using a DBN-structured articulatory model (AM). We also
present an EM-based conversion algorithm to convert audio to vi-
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Fig. 3. Estimated visual parameter time trajectories (the 1st PCA
component for the R channel) for a testing sentence. Dotted lines
indicate the actual parameters, and solid lines indicate the estimated
parameters by (a)PMs, (b)CD-PMs, (c)AMs, and (d)CD-AMs. All
the curves are smoothed by the moving average method.

Fig. 4. Some snapshots of the synthesized mouth animation overlaid
onto the videos from the AV subjective testing set.

sual parameters by maximizing the likelihood of the visual param-
eters given the audio data and the articulatory model. To realize
mouth-synching for speaker independent continuous speech with a
large vocabulary, we further refine the model by introducing speech
context information, leading to context dependent articulatory model
(CD-AM). Objective and subjective evaluations show that articula-
tory modelling is promising, and our models (AM and CD-AM) out-
perform the phoneme-based models tested (PM and CD-PM). The
mouth animation generated by the CD-AMs has achieved more nat-
ural and realistic performance. For future work, we’d like to inves-
tigate how to stitch the mouth animation with the movement of the
whole face seamlessly, and thus achieve a lifelike talking face.
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