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ABSTRACT

This paper describes an automated system for assigning qual-
ity scores to recorded call center conversations. The system com-
bines speech recognition, pattern matching, and maximum entropy
classification to rank calls according to their measured quality.
Calls at both end of the spectrum are flagged as “interesting” and
made available for further human monitoring. In this process, pat-
tern matching on the ASR transcript is used to answer a set of stan-
dard quality control questions such as “did the agent use courteous
words and phrases,” and to generate a question-based score. This
is interpolated with the probability of a call being “bad,” as de-
termined by maximum entropy operating on a set of ASR-derived
features such as “maximum silence length” and the occurrence of
selected n-gram word sequences. The system is trained on a set
of calls with associated manual evaluation forms. We present pre-
cision and recall results from IBM’s North American Help Desk
indicating that for a given amount of listening effort, this system
triples the number of bad calls that are identified, over the current
policy of randomly sampling calls.

1. INTRODUCTION

Every day, tens of millions of help-desk calls are recorded at call
centers around the world. As part of a typical call center operation
a random sample of these calls is normally re-played to human
monitors who score the calls with respect to a variety of quality
related questions, e.g.

� Was the account successfully identified by the agent?
� Did the agent request error codes/messages to help deter-

mine the problem?
� Was the problem resolved?
� Did the agent maintain appropriate tone, pitch, volume and

pace?

This process suffers from a number of important problems: first,
the monitoring at least doubles the cost of each call (first an opera-
tor is paid to take it, then a monitor to evaluate it). This causes the
second problem, which is that therefore only a very small sample
of calls, e.g. a fraction of a percent, is typically evaluated. The
third problem arises from the fact that most calls are ordinary and
uninteresting; with random sampling, the human monitors spend
most of their time listening to uninteresting calls.

This paper describes an automated quality-monitoring system
that addresses these problems. Automatic speech recognition is
used to transcribe 100% of the calls coming in to a call center,
and default quality scores are assigned based on features such as
key-words, key-phrases, the number and type of hesitations, and
the average silence durations. The default score is used to rank

the calls from worst-to-best, and this sorted list is made available
to the human evaluators, who can thus spend their time listening
only to calls for which there is some a-priori reason to expect that
there is something interesting.

The automatic quality-monitoring problem is interesting in
part because of the variability in how hard it is to answer the ques-
tions. Some questions, for example, “Did the agent use courteous
words and phrases?” are relatively straightforward to answer by
looking for key words and phrases. Others, however, require es-
sentially human-level knowledge to answer; for example one com-
pany’s monitors are asked to answer the question “Did the agent
take ownership of the problem?” Our work focuses on calls from
IBM’s North American call centers, where there is a set of 31 ques-
tions that are used to evaluate call-quality. Because of the high de-
gree of variability found in these calls, we have investigated two
approaches:

1. Use a partial score based only on the subset of questions
that can be reliably answered.

2. Use a maximum entropy classifier to map directly from
ASR-generated features to the probability that a call is bad
(defined as belonging to the bottom 20% of calls).

We have found that both approaches are workable, and we present
final results based on an interpolation between the two scores.
These results indicate that for a fixed amount of listening effort,
the number of bad calls that are identified approximately triples
with our call-ranking approach. Surprisingly, while there has been
significant previous scholarly research in automated call-routing
and classification in the call center , e.g. [1, 2, 3, 4, 5], there has
been much less in automated quality monitoring per se.

2. ASR FOR CALL CENTER TRANSCRIPTION

2.1. Data

The speech recognition systems were trained on approximately
300 hours of 6kHz, mono audio data collected at one of the IBM
call centers located in Raleigh, NC. The audio was manually tran-
scribed and speaker turns were explicitly marked in the word tran-
scriptions but not the corresponding times. In order to detect
speaker changes in the training data, we did a forced-alignment
of the data and chopped it at speaker boundaries.

The test set consists of 50 calls with 113 speakers totaling
about 3 hours of speech.

2.2. Speaker Independent System

The raw acoustic features used for segmentation and recognition
are perceptual linear prediction (PLP) features. For the speaker
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Segmentation/clustering Adaptation WER
Manual Off-line 30.2%
Manual Incremental 31.3%
Manual No Adaptation 35.9%

Automatic Off-line 33.0%
Automatic Incremental 35.1%

Table 1. ASR results depending on segmentation/clustering and
adaptation type.

Accuracy Top 20% Bottom 20%
Random 20% 20%

QA 41% 30%

Table 2. Accuracy for the Question Answering system.

independent system, the features are mean-normalized on a per
speaker basis. Every 9 consecutive 13-dimensional PLP frames
are concatenated and projected down to 40 dimensions using
LDA+MLLT. The SI acoustic model consists of 50K Gaussians
trained with MPE and uses a quinphone cross-word acoustic con-
text. The techniques are the same as those described in [6].

2.3. Incremental Speaker Adaptation

In the context of speaker-adaptive training, we use two forms
of feature-space normalization: vocal tract length normalization
(VTLN) and feature-space MLLR (fMLLR, also known as con-
strained MLLR) to produce canonical acoustic models in which
some of the non-linguistic sources of speech variability have been
reduced. To this canonical feature space, we then apply a discrim-
inatively trained transform called fMPE [7]. The speaker adapted
recognition model is trained in this resulting feature space using
MPE.

We distinguish between two forms of adaptation: off-line and
incremental adaptation. For the former, the transformations are
computed per conversation-side using the full output of a speaker
independent system. For the latter, the transformations are updated
incrementally using the decoded output of the speaker adapted sys-
tem up to the current time. The speaker adaptive transforms are
then applied to the future sentences. The advantage of incremental
adaptation is that it only requires a single decoding pass (as op-
posed to two passes for off-line adaptation) resulting in a decoding
process which is twice as fast. In Table 1, we compare the per-
formance of the two approaches. Most of the gain of full offline
adaptation is retained in the incremental version.

2.3.1. Segmentation and Speaker Clustering

We use an HMM-based segmentation procedure for segmenting
the audio into speech and non-speech prior to decoding. The rea-
son is that we want to eliminate the non-speech segments in order
to reduce the computational load during recognition. The speech
segments are clustered together in order to identify segments com-
ing from the same speaker which is crucial for speaker adaptation.
The clustering is done via k-means, each segment being modeled
by a single diagonal covariance Gaussian. The metric is given by
the symmetric K-L divergence between two Gaussians. The im-

Accuracy Top 20% Bottom 20%
Random 20% 20%

ME 49% 36%

Table 3. Accuracy for the Maximum Entropy system.

Accuracy Top 20% Bottom 20%
Random 20% 20%
ME + QA 53% 44%

Table 4. Accuracy for the combined system.

pact of the automatic segmentation and clustering on the error rate
is indicated in Table 1.

3. CALL RANKING

3.1. Question Answering

This section presents automated techniques for evaluating call
quality. These techniques were developed using a train-
ing/development set of 676 calls with associated manually gen-
erated quality evaluations. The test set consists of 195 calls.

The quality of the service provided by the help-desk represen-
tatives is commonly assessed by having human monitors listen to
a random sample of the calls and then fill in evaluation forms. The
form for IBM’s North American Help Desk contains 31 questions.
A subset of the questions can be answered easily using automatic
methods, among those the ones that check that the agent followed
the guidelines e.g.

� Did the agent follow the appropriate closing script?
� Did the agent identify herself to the customer?

But some of the questions require human-level knowledge of the
world to answer, e.g.

� Did the agent ask pertinent questions to gain clarity of the
problem?

� Were all available resources used to solve the problem?

We were able to answer 21 out of the 31 questions using pat-
tern matching techniques. For example, if the question is “Did
the agent follow the appropriate closing script?”, we search for
“THANK YOU FOR CALLING”, “ANYTHING ELSE” and
“SERVICE REQUEST”. Any of these is a good partial match for
the full script, “Thank you for calling, is there anything else I can
help you with before closing this service request?” Based on the
answer to each of the 21 questions, we compute a score for each
call and use it to rank them. We label a call in the test set as being
bad/good if it has been placed in the bottom/top 20% by human
evaluators. We report the accuracy of our scoring system on the
test set by computing the number of bad calls that occur in the
bottom 20% of our sorted list and the number of good calls found
in the top 20% of our list. The accuracy numbers can be found in
Table 2.

3.2. Maximum Entropy Ranking

Another alternative for scoring calls is to find arbitrary features in
the speech recognition output that correlate with the outcome of a
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Fig. 1. Display of selected calls.

call being in the bottom 20% or not. The goal is to estimate the
probability of a call being bad based on features extracted from
the automatic transcription. To achieve this we build a maximum
entropy based system which is trained on a set of calls with asso-
ciated transcriptions and manual evaluations. The following equa-
tion is used to determine the score of a call

�
using a set of �

predefined features:

� � � � � � � � � 	 
 ��  � � � �� � � � �
� � � � � � � � � � � 	 	

(1)

where
� � � � � � � � � � � � � � � � � �  

,
�

is a normalizing factor,

� � � 	
are indicator functions and

� �
�  ! � � � " � # are the parameters of the

model estimated via iterative scaling [8].

Due to the fact that our training set contained under 700 calls,
we used a hand-guided method for defining features. Specifi-
cally, we generated a list of VIP phrases as candidate features,
e.g. “THANK YOU FOR CALLING”, and “HELP YOU”. We
also created a pool of generic ASR features, e.g. “number of hes-
itations”, “total silence duration”, and “longest silence duration”.
A decision tree was then used to select the most relevant features
and the threshold associated with each feature. The final set of fea-
tures contained 5 generic features and 25 VIP phrases. If we take a
look at the weights learned for different features, we can see that if
a call has many hesitations and long silences then most likely the
call is bad.

We use
� � � � � $ � 	

as shown in Equation 1 to rank all the calls.
Table 3 shows the accuracy of this system for the bottom and top
20% of the test calls.

At this point we have two scoring mechanisms for each call:
one that relies on answering a fixed number of evaluation ques-
tions and a more global one that looks across the entire call for
hints. These two scores are both between 0 and 1, and therefore
can be interpolated to generate one unique score. After optimizing
the interpolation weights on a held-out set we obtained a slightly
higher weight (0.6) for the maximum entropy model. It can be
seen in Table 4 that the accuracy of the combined system is greater
that the accuracy of each individual system, suggesting the com-
plementarity of the two initial systems.

Fig. 2. Interface to listen to audio and update the evaluation form.

4. END-TO-END SYSTEM PERFORMANCE

4.1. User Interface

This section describes the user interface of the automated quality
monitoring application. As explained in Section 1, the evalua-
tor scores calls with respect to a set of quality-related questions
after listening to the calls. To aid this process, the user interface
provides an efficient mechanism for the human evaluator to select
calls, e.g.% All calls from a specific agent sorted by score% The top 20% or the bottom 20% of the calls from a specific

agent ranked by score% The top 20% or the bottom 20% of all calls from all agents

The automated quality monitoring user interface is a J2EE web
application that is supported by back-end databases and content
management systems 1 The displayed list of calls provides a link
to the audio, the automatically filled evaluation form, the overall
score for this call, the agent’s name, server location, call id, date
and duration of the call (see Figure 1). This interface now gives
the agent the ability to listen to interesting calls and update the
answers in the evaluation form if necessary (audio and evaluation
form illustrated in 2). In addition, this interface provides the eval-
uator with the ability to view summary statistics (average score)
and additional information about the quality of the calls.

4.2. Precision and Recall

This section presents precision and recall numbers for the
identification of “bad” calls. The test set consists of � & ' calls that
were manually evaluated by call center personnel. Based on these
manual scores, the calls were ordered by quality, and the bottom
20% were deemed to be “bad.” To retrieve calls for monitoring,
we sort the calls based on the automatically assigned quality score
and return the worst. In our summary figures, precision and recall
are plotted as a function of the number of calls that are selected
for monitoring. This is important because in reality only a small
number of calls can receive human attention. Precision is the ratio

1In our case, the backend consists of DB2 and IBM’s Websphere Infor-
mation Integrator for Content and the application is hosted on Websphere
5.1.)
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Fig. 3. Precision for the bottom 20% of the calls as a function of
the number of calls retrieved.
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Fig. 4. Recall for the bottom 20% of the calls.

of bad calls retrieved to the total number of calls monitored, and
recall is the ratio of the number of bad calls retrieved to the total
number of bad calls in the test set. Three curves are shown in each
plot: the actually observed performance, performance of random
selection, and oracle or ideal performance. Oracle performance
shows what would happen if a perfect automatic ordering of the
calls was achieved.

Figure 3 shows precision performance. We see that in the
monitoring regime where only a small fraction of the calls are
monitored, we achieve over 60% precision. (Further, if 20% of
the calls are monitored, we still attain over 40% precision.)

Figure 4 shows the recall performance. In the regime of low-
volume monitoring, the recall is midway between what could be
achieved with an oracle, and the performance of random-selection.

Figure 5 shows the ratio of the number of bad calls found with
our automated ranking to the number found with random selection.
This indicates that in the low-monitoring regime, our automated
technique triples efficiency.

4.3. Human vs. Computer Rankings
As a final measure of performance, in Figure 6 we present a
scatterplot comparing human to computer rankings. We do not
have calls that are scored by two humans, so we cannot present a
human-human scatterplot for comparison.

5. CONCLUSION

This paper has presented an automated system for quality moni-
toring in the call center. We propose a combination of maximum-
entropy classification based on ASR-derived features, and question
answering based on simple pattern-matching. The system can ei-
ther be used to replace human monitors, or to make them more
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Fig. 5. Ratio of bad calls found with QTM to Random selection as
a function of the number of bad calls retrieved.
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Fig. 6. Scatter plot of Human vs. Computer Rank.

efficient. Our results show that we can triple the efficiency of hu-
man monitors in the sense of identifying three times as many bad
calls for the same amount of listening effort.
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