
MULTITASK LEARNING FOR SPOKEN LANGUAGE UNDERSTANDING

Gokhan Tur

Speech Technology and Research Laboratory
SRI International

Menlo Park, CA 94025, USA
gokhan@speech.sri.com

ABSTRACT

In this paper, we present a multitask learning (MTL) method
for intent classification in goal oriented human-machine spo-
ken dialog systems. MTL aims at training tasks in parallel
while using a shared representation. What is learned for
each task can help other tasks be learned better. Our goal is
to automatically re-use the existing labeled data from vari-
ous applications, which are similar but may have different
intents or intent distributions, in order to improve the perfor-
mance. For this purpose, we propose an automated intent
mapping algorithm across applications. We also propose
employing active learning to selectively sample the data to
be re-used. Our results indicate that we can achieve sig-
nificant improvements in intent classification performance
especially when the labeled data size is limited.

1. INTRODUCTION
When building spoken language processing systems, usu-
ally data are collected and a model is trained for each ap-
plication individually. However this may be suboptimal in
cases where a number of similar systems are going to be
built. Our domain is a call routing system where the aim is
to route the input calls in a customer care call center. In this
spoken dialog system, callers are greeted by the open ended
prompt “How May I Help You?” encouraging them to ut-
ter their requests in natural language. The system then tries
to identify the customer’s intent (call-type) using a spoken
language understanding (SLU) component. In the event the
system is unable to understand the caller with high enough
confidence, the conversation usually proceeds with either a
reprompt or a confirmation prompt.

The understanding step can be seen as a classification
problem [1]. For this purpose, data-driven classifiers are
trained using large amounts of task data which is usually
transcribed and then labeled by humans, an expensive and
laborious process. By “labeling”, we mean assigning one

This work was donewhen the author was with AT&T Labs - Research,
Florham Park, NJ 07932, USA.

or more of the predefined intents to each utterance. As an
example, consider the utterance I would like to know my ac-
count balance, in a customer care application from a finan-
cial domain. Assuming that the utterance is recognized cor-
rectly, the corresponding intent would be Request(Balance)
and the action would be telling the balance to the user after
prompting for the account number or routing this call to the
billing department.

Building many spoken dialog systems using similar in-
tent classification models in a shorter time frame motivates
us to re-use the existing labeled data from various applica-
tions to improve the performance. In our previous work, we
have presented a model adaptation approach, where a better
model is built by adapting an existing model from a sim-
ilar application [2] with the same call-types. Furthermore,
we have presented a library-based approach, where a human
expert can bootstrap the new application model by manually
selecting data from the library and augmenting them with
rules [3].

In this paper, we present a multitask learning (MTL)
method for natural language intent classification. MTL aims
at training tasks (in our case, applications) in parallel while
using a shared representation [4]. While typically learn-
ing algorithms learn one task at a time, what is learned for
each task can help other tasks be learned better. Although
the originally suggested MTL framework uses backpropa-
gation neural networks, the idea is more general. MTL has
been employed for many tasks during the last decade, even
for speech and language processing: Parveen and Green
have employed MTL for isolated-word connectionist speech
recognition and obtained error reductions ranging from 20%
to 50% [5]. Florian and Ngai have proposed a version of
MTL for English and Chinese part of speech tagging and
base noun phrase chunking with transformation based learn-
ing [6]. Sutton and McCallum have employed MTL under a
more general framework called transfer learning for condi-
tional random fields. They have shown improvements using
MTL for named entity extraction using ACE and CoNLL
data sets [7].

In this study, we propose reusing the already labeled

I 585142440469X/06/$20.00 ©2006 IEEE ICASSP 2006

data across applications while training. This is similar to
model adaptation, however in this case we do not assume
that call-types are the same. For multitask learning the main
issue is the naming and granularity inconsistencies between
call-type sets of different applications. We propose a method
to find a mapping to resolve this issue using the already
labeled data. Furthermore, instead of simply reusing all
the labeled data, inspired by active learning, we present a
method to only reuse the most informative labeled data.

In the following section, we briefly explain the MTL
approach we have employed with the proposed mapping
method. Then, in Section 3, we propose an active MTL
method. We conclude after presenting the experiments and
results.

2. MULTITASK LEARNING

MTL suggests data amplification to enable the learner to
generalize better [4]. The idea is to simply concatenate the
training data of various applications. In order to concate-
nate the training data, MTL requires a shared representation
among the tasks, which are going to be learned in parallel.
This requires the feature space and the set of classes to be
the same. For our tasks, the input, hence the feature space,
is always the same: the current utterance and its n-grams.
The problem is the set of classes, since they differ across
applications.

In the AT&T Spoken Language Understanding System,
the call-types are designed to capture information that is
sufficient to fulfill users’ request [1]. Moreover, the call-
types are not motivated by the action that needs to be taken,
instead by the intent of the user. Still, it is not uncom-
mon that the very same intents have been labeled differently
across various applications due to various reasons:

� Naming Inconsistencies: One common reason for the
mismatched call-types is due to considering different
namings of two call-types, ci and cj (ci � cj). For ex-
ample, in one application Request(Bill) call-type can
be renamed as Ask(Bill), indicating a vague request
about a customer’s bill, such as I have a question
about my bill.

� Different Call-type Granularities: Due to specific ap-
plication requirements, it is very common to have call-
types with different granularities:

ci � cj� � cj� � ���� cjk

where ci is one call-type from one application and
cj����cjk are call-types from another application. For
example, one application might label the utterance
At what time do you close? with the call-type Re-
quest(Store Hours) and the utterance Where exactly
is your Manhattan store? with the call-type Requ-
est(Store Location), and another application might la-
bel the very same utterances with the single call-type
Request(Store Info). Althoughwhile designing a new

application the human designers make effort for con-
sistency with the previous applications, there may be
specific design requirements or these utterances may
need to be treated differently.

Another reason for call-typemismatch might be due to over-
laps among call-types, i.e. a given call-type, ci, intersects
with more than one call-types, cj and ck (ci � cj and
ci � ck and cj � ck �� ci). Since they are not frequently
seen in the AT&T SLU system, we assume these do not
happen.

In order to make similar but not equivalent call-types
usable across applications, we propose an automated map-
ping procedure. In this study, we assume that we have some
amount of labeled data for these applications. First we train
individual models, Mi and Mj using corresponding train-
ing data sets, Di and Dj . Then the idea is using these la-
beled data and models to find out the call-type mappings.
We converted this to an information (in this case call-type)
retrieval problem. The goal is to retrieve the call-types that
are merged in the other application. The recall is defined
as the ratio of call-types that are selected among the actual,
and the precision is defined as the ratio of call-types that are
actually merged. First we automatically cross-label the data
sets of two applications,Di andDj , using the existing mod-
els. We call an utterance, si, to be automatically labeled if
the confidence score, CS�si�, is more than some threshold.
In this work, we let

CS�si� � max
cj

P �cjjW �

where cj is the call-type and W is the utterance. Using
the call-types automatically assigned by Mi to Dj , �Cj, and
actual call-types for Dj , Cj, it is possible to estimate the
merged or renamed call-types. For example if all instances
of call-type ci is automatically labeled as �cj, this indicates
a renaming. In order to keep the precision high, we require
that a call-type of the existing model to be labeled as a new
call-type by more than a certain threshold precision. Then,
the split call-types can be found vice-versa. This algorithm
can be extended in case there are more than two applica-
tions, by trying binary combinations.

After the mapping is found, the last step of MTL is re-
training the existing model using this information: The call-
types which are found to be merged in Dj are also merged
in Di. The call-types which are found to be split in Dj are
handled using the labels in �Cj. We get a new data set after
these rename, merge, and split operations, �Di for applica-
tion i. The new models are then built using the application’s
own training data, Di and the mapped data from the other
application, �Dj . More formally, the MTL procedure is as
follows:

� Train Mi withDi and Mj withDj

� Form mapped data sets �Di and �Dj .
� Re-train Mi with Di � �Dj .

I 586

3. MULTITASK ACTIVE LEARNING

Inspired by active learning, we propose an extension of the
data amplification method of MTL. Active learning aims at
reducing the number of training examples to be labeled by
selectively sampling a subset of the unlabeled data. This
is done by inspecting the unlabeled examples and selecting
the most informative ones, with respect to a given cost func-
tion, for a human to label [8]. In our previouswork, we have
proposed using active learning for spoken language under-
standing [9]. In this study, the idea is instead of adding all
the data from other applications, one can only add the most
informative ones. Based on certainty-based active learning,
we use the confidence scores of the utterances, CS�si�, as
the criterion for informativeness, and used the utterances
whose confidence scores are lower than some threshold. More
formally, the active MTL procedure is as follows:

� Train Mi with Di and Mj with Dj

� Form mapped data sets �Di and �Dj .

� Use Mi to classify �Dj to get CS� �dj� for all j � ���n

where �Dj � �d�� ���� �dn.

�
��Dj � f �dj � CS� �dj� � thresholdg

� Re-train Mi with Di �
��Dj .

Although this approach reduces the number of examples
added to the training data,Di, it implicitlygives more weight
to the examples which are not seen before, hence got a lower
score.

4. EXPERIMENTS AND RESULTS

We evaluated the proposed methods using the utterances
from the database of the AT&T VoiceTone R� spoken dialog
system [10]. We performed our tests using the Boostex-
ter classification tool [11], an implementation of the Boost-
ing family of classifiers. Boosting is an iterative procedure;
on each iteration a weak classifier is trained on a weighted
training set, and at the end, the weak classifiers are com-
bined into a single, combined classifier. For all experiments,
we used word trigrams as features, and each weak classifier
(e.g. “decision stump”) checks the absence or presence of a
feature.

We used two applications from the telecommunications
domain and checked whether automatically selecting utter-
ances with mapped call-types from one application,T�, would
help the other one, T�. The data characteristics for the two
applications used in the experiments are given in Table 1. In
our experiments all of the utterances are transcribed in order
not to deal with ASR errors.

While evaluating the classification performance, we used
the top class error rate (TCER), which is the fraction of ut-
terances in which the call-type with maximum probability
was not one of the true call-types.

T� T�

Training Data Size 35,551 utt. 9,093 utt.
Test Data Size 5,000 utt. 5,172 utt.

Number of Calltypes 65 84
Call-type Perplexity 14.7 29.3

Average Utterance Length 12 words 13 words

Table 1. Data characteristics used in the experiments.

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

F
re

qu
en

cy

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

F
re

qu
en

cy

Call−types

T
1
 data

MT
2
 data

Fig. 1. Call-type frequencies for the T� data and the mapped
T� (�D�) data. The call-types are aligned.

Before reusing data from the application T�, one needs
to map the call-types into the other application. Using the
method explained in Section 2, we have come up with 19
mappings. Some frequent examples include:

Make(Payment) � Pay Bill
Request(Sales) � New Service
Tellme(Balance) � Account Balance
Verify(Payment) � Account Balance

Note that the last two ones indicate two merged call-types.
After these mappings, we have filtered out the utterances of
T�, whose call-types are unknown to Application T�. This
left us with about half of the all data of T�, more specifically,
with 4,666 utterances. The call-type frequencies of T� and
mapped utterances of T� (�D�) are given in Figure 1. As
seen, the most frequent call-types of T� also exist in the �D�

data and in total, only 11.5% of the utterances of T� has a
call-type which is not seen in �D�.

When we use the same 4,666 utterances (�D�) as the sole
training data, we get a TCER of 31.84% on the T� test set.
Note that this figure is only 4.6% inferior to 27.26%, the
performance when we use a random subset of the same size
from T� training data. After getting these promising results,
as the first experiment, we added �D� to the T� data, but got

I 587

1 2 3 4 5 6 7 8 9 10
0.24

0.25

0.26

0.27

0.28

0.29

0.3

0.31

0.32

Number of labeled utterances from application T
1
 (x1000)

T
op

 C
la

ss
 E

rr
or

 R
at

e

Baseline: No Data Reuse
With Random T

1
 Data

With Selected T
1
 Data

Fig. 2. Results using MTL. x-axis is the amount of labeled
data from application T�. Top learning curve is obtained
using just T� data as a baseline. Below that lies the learning
curves using the random and active MTL.

no improvement. Then in order to apply active MTL, we
tested �D� with the T� model and selected 897 utterances,

which have got low confidences, to obtain �

�D�, as explained
Section 3. Figure 2 shows the learning curve by adding
these 897 utterances to the training data of the T�. The top
most curve is the baseline and obtained without any data
re-use. In order to check the effect of using selected data,
we have randomly selected 897 utterances among 4,666 ut-
terances, then added these to the T� training data. This is
the curve lying below the baseline. As seen, MTL helped
at all data points, until T� has about 9,000 labeled training
utterances. Note that this is about 10 times the amount of
data re-used. Furthermore, for the first 2 data points, the im-
provement is significant1. This figure also proves the effec-
tiveness of the selective sampling of data to be re-used for
MTL. At almost all data points, active MTL outperformed
random MTL.

5. CONCLUSIONS

We have presented an application of MTL for natural lan-
guage intent classification. We have shown that, for this
task, using the proposed methods, it is possible to improve
the performance of a spoken language understanding sys-
tem significantly when there is not much training data avail-
able. We have also proposed combining MTL with active
learning to selectively sample the data to re-use.

MTL is also applicable to many other speech and lan-
guage processing tasks. For example, the well-known ATIS

1Z-test with 0.95 confidence interval

SLU task [12] requires the system to determine the depar-
ture and arrival cities in the utterances. One can use a named
entity extraction task training data to determine the loca-
tions to improve the performance of these two sub-named
entities in ATIS, and vice versa. This corresponds to merged
classes in our case.

Note that in this paper, we have only employed the sim-
plest method of MTL, i.e. data amplification. This is intu-
itively suboptimal in some cases. For example, since most
classifiers are sensitive to the prior distributionof the classes,
changing this distribution may harm the performance. This
also leads to an important research area while employing
MTL: selecting the utterances to be re-used.

Our future work includes using MTL with more than
two applications. The ultimate goal is to collectively im-
prove the performance of all these applications in parallel.

6. REFERENCES

[1] N. Gupta, G. Tur, D. Hakkani-Tür, S. Bangalore,G. Riccardi,
and M. Rahim, “The AT&T spoken language understanding
system,” IEEE Transactions on Speech and Audio Process-
ing, To appear.

[2] G. Tur, “Model adaptation for spoken language understand-
ing,” in Proceedings of the ICASSP, Philadelphia, PA, May
2005.

[3] G. Di Fabbrizio, G. Tur, and D. Hakkani-Tür, “Bootstrapping
spokendialog systemswith data reuse,” in Proceedingsof the
SigDial Workshop, Boston, MA, May 2004.

[4] R. Caruana, “Multitask learning,” Machine Learning, vol.
28, no. 1, pp. 41–75, 1997.

[5] S. Parveen and P. Green, “Multitask learning in connection-
ist robust asr using recurrent neural networks,” in Proceed-
ings of the EUROSPEECH, Geneva, Switzerland, September
2003.

[6] R. Florian and G. Ngai, “Multidimensional transformation-
based learning,” in Proceedings of the CoNLL, Toulouse,
France, July 2001.

[7] C. Sutton and A. McCallum, “Composition of conditional
random fields for transfer learning,” in Proceedings of the
HLT/EMNLP, Vancouver, Canada, October 2005.

[8] D. Cohn, L. Atlas, and R. Ladner, “Improving generalization
with active learning,” Machine Learning, vol. 15, pp. 201–
221, 1994.

[9] G. Tur, R. E. Schapire, and D. Hakkani-Tür, “Active learning
for spoken language understanding,” in Proceedings of the
ICASSP, Hong Kong, May 2003.

[10] M. Gilbert, J. G. Wilpon, B. Stern, and G. Di Fabbrizio, “Vir-
tual agents for contact center automation,” IEEE Speech Pro-
cessing Magazine, vol. 22, no. 5, September 2005.

[11] R. E. Schapire and Y. Singer, “Boostexter: A boosting-based
system for text categorization,” Machine Learning, vol. 39,
no. 2/3, pp. 135–168, 2000.

[12] P. J. Price, “Evaluation of spoken language systems: The
ATIS domain,” in Proceedings of the DARPA Workshop
on Speech and Natural Language, Hidden Valley, PA, June
1990.

I 588

