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ABSTRACT
This paper investigates a scheme for joint segmentation and
classification of dialog acts (DAs) of the ICSI Meeting Cor-
pus based on hidden-event language models and a maximum
entropy classifier for the modeling of word boundary types.
Specifically, the modeling of the boundary types takes into
account dependencies between the duration of a pause and its
surrounding words. Results for the proposed method compare
favorably with our previous work on the same task.

1. INTRODUCTION

To support higher-level tasks such as information retrieval and
summarization [1, 2], an input speech signal must be seg-
mented into meaningful units, such as dialog acts (DAs). The
DA types considered here are statements, questions, backchan-
nels, floorgrabbers, and disruptions. The task we investigate
is how to split a stream of words into nonoverlapping seg-
ments of text and assign mutually exclusive DA types to these
segments. While this task description suggests a sequential
solution, an approach based on joint segmentation and classi-
fication most likely performs best because knowledge of the
classification might also improve the segmentation. We use
the term joint segmentation and classification for systems that
do not implement this task in the form of two independent
modules running in sequence but produce their final result by
taking into account information from both the segmentation
and the classification.

Previous work mainly concentrated on either segmenta-
tion of speech [3, 4] or classification of already segmented
text into various sets of DA types [5, 6, 7]. For automatic
segmentation of speech, it remains unclear how well a sub-
sequent component can handle segmentation errors. For the
latter case, the classification of DAs, it is typically assumed
that the true segmentation boundaries are provided. As a con-
sequence, a degradation of the performance due to imperfect
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segmentation boundaries is to be expected. Of course, for
fully automatic processing of the speech stream both tasks
need to be addressed. On the ICSI (MRDA) Corpus [8] a se-
quential approach based on both word and prosody features
is described in [9]. A simple extension performing joint seg-
mentation and classification of DAs was considered in [10],
but did not include prosody.

In this paper prosodic features (pause durations) are used
to extend [10]. Specifically, we use maximum entropy to
model word boundary types based on both words and pause
durations for joint segmentation and classification. A similar
concept was used in [11] to annotate punctuation from speech.
The performance of the proposed method is then evaluated
and compared to the results reported in [9].

2. METHODOLOGY

2.1. Word based Segmentation and Classification

For joint segmentation and classification of DAs we are using
a technique based on a Hidden-Event Language Model (HE-
LM) [12] presented in [10]. After each word, the HE-LM
predicts either a non-boundary event or the boundary event
corresponding to any of the five DA types under consider-
ation (i.e. backchannel, disruption, floorgrabber, question,
or statement) resulting in a six-way classification of word
boundaries. To produce the final output, the probability for
the non-boundary event is compared to a fixed threshold θ
at each word boundary. If its value is lower than the thresh-
old we insert the boundary event associated with the highest
a posteriori probability, otherwise the non-boundary event is
chosen. The threshold θ therefor controls the insertion rate
for DA boundaries.

2.2. Pause Duration and Word Context

The use of the duration of pauses between consecutive words
of a given speaker have been found to substantially improve
performance of systems segmenting speech into utterances [4]
or dialog acts [9]. This finding is supported by Fig. 1 that
shows how pause lengths are related to word boundaries or
DA boundaries.
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Fig. 1. Distribution of pause duration for pauses at dialog
acts (DA) boundaries and words boundaries within a DA.

Word Context Pause [s] Count
you know 0.006 2876
the the 0.176 988
um um 0.935 55
because um 0.399 34
um yeah 0.746 30

Fig. 2. Average pause durations for some sample word pairs.
The two words correspond to the word before and after the
pause. The examples are sorted according to their observed
frequency (Count).

However, Fig. 1 also indicates that any classification rely-
ing on the duration of the pause alone is prone to high error
rates for short pauses. Inspection of such pauses that are not
related to DA boundaries shows that such pauses are not dis-
tributed randomly but are often caused by hesitations. Very
frequently, longer pauses occur in the neighborhood of filled
pauses, such as “uh” and “um” or between word repetitions,
as in “the the”. See Fig. 2 for some examples. In contrast,
the most frequently observed word pair “you know” does not
have a pause between the word “you” and the word “know”
in most cases, which further indicates that pause duration is
closely related to the word context.

To model the boundary type between two words based on
pause duration and its word context we use a maximum en-
tropy based classifier. As the maximum entropy framework
typically uses binary functions that mark the presence or ab-
sence of a particular feature, a given pause duration is repre-
sented by the corresponding bin of the histogram. Durations
from zero up to three seconds were partitioned into ten bins in
such a way that each bin received the same amount of training
samples. For pause durations longer than three seconds a spe-
cial bin was used. In addition, up to four surrounding words

Reference S|Q.Q.Q.Q|S.S.S|B|S.S|
System S|Q|S|Q.Q|D.D.D|S.S|S|
NIST-SU C E E C C E E C
DSER C| E | C |E| E |

Metric Errors Reference Rate
NIST-SU 3 FA, 1 miss 5 boundaries 80%
DSER 3 match errors 5 DAs 60%

Fig. 3. The NIST-SU, and the DSER metrics for the as-
sessment of segmentation error rates. Both the reference and
the system line represent a sequence of words tagged with
corresponding DA types, with statement (S), question (Q),
backchannel (B), and disruption (D).

are used as textual features. For the baseline case word based
features are omitted completely. Then, word wi right before
the pause and the joint feature (wi, pi) is included where pi

identifies the bin associated with the pause. For larger con-
texts the word wi+1 right after the pause is first added be-
fore words wi−1 and wi−2 are taken into account. Depending
on the word context size, additional joint features (wi−1, wi),
(wi, wi+1), and (pi, wi+1) are added. To limit the amount of
features, we only consider features that have been observed
at least five times in the training data. As in the case of the
HE-LM the task of the maximum entropy classifier is to de-
termine the DA type corresponding to the boundary between
two words. We therefor end up with probabilities for the same
six event types. These probabilities can then be integrated in
the HE-LM conveniently, producing the most likely event for
each word boundary according to [4]. These probabilities are
then weighted against the probabilities produced by the HE-
LM with a log likelihood weight α. For α = 0 the probabil-
ities from the maximum entropy classifier are not taken into
account. Increasing values of α lead to a final result that is
more and more influenced by the maximum entropy classifier
(e.g. α = 1 assigns the same weight to the n-gram HE-LM
probabilities as to the probabilities from the maximum en-
tropy classifier).

2.3. Performance Metrics

To assess the performance of segmentation or classification
of DAs, a number of metrics have been proposed. For the
case of joint segmentation and classification most available
metrics do not directly fit. For instance, metrics evaluating
segmentation performance do not consider the correctness of
the classification task while metrics for the classification of
DAs assume perfect segmentation. Since tuning of system
parameters is inherent to most systems, it is important to tune
to metrics that are appropriate to the task at hand.

We first describe two metrics for the measurement of the
segmentation performance and then define metrics for the joint
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Reference S|Q.Q.Q.Q|S.S.S|B|S.S|
System S|Q|S|Q.Q|D.D.D|S.S|S|
Strict C E E E E E E E E E E
DER C| E | E |E| E |

Metric Errors Reference Rate
Strict 10 match errors 11 words 91%
DER 4 match errors 5 DAs 80%

Fig. 4. Comparison of the Strict and the DER metrics to
measure joint performance of segmentation and classification
of DAs.

segmentation and classification of DAs. The NIST-SU met-
ric [13] was used to report the segmentation performance in
previous work [9]. To provide a more intuitive metric that is
directly related to DAs, we introduced the DA Segmentation
Error Rate (DSER) in [10]. The DSER measures the percent-
age of wrongly segmented reference DA segments, where a
DA is considered to be mis-segmented if and only if its left
or right boundary (or both) does not exactly correspond to the
reference segmentation. This implies that for the DSER met-
ric missed cases are penalized more than false alarms (FA)
compared to the NIST-SU metric. Also, for the DSER metric
the maximum error rate is 100% (e.g. not putting boundaries
anywhere) while for the NIST-SU metric the error rate can
easily exceed 100% (e.g. 500% when we assume that we put
a DA boundary between all words and a DA contains 6 words
on average). See Fig. 3 for an illustration.

For the assessment of the joint performance of the seg-
mentation and classification of DAs, a word-based and a DA-
based metric are used in the experiments described below 1.
The word-based Strict metric has been introduced in [9] while
the DA-based DER metric was proposed in [10] as an analog
to the DSER segmentation metric. For the Strict metric, a
word is considered to be correctly classified if and only if it
has been assigned the correct DA type and it lies in exactly
the same DA segment as the corresponding word of the ref-
erence. The DA Error Rate (DER) not only requires a DA
candidate to have exactly matching boundaries but also to be
tagged with the correct DA type. The DER thus measures the
percentage of the misrecognized reference DAs and can be
seen as a length-normalized version of the Strict metric. See
Fig. 4 for an illustration.

3. EXPERIMENTS AND DISCUSSION

For all experiments reported here, the experimental setup as
described in [9] is used. Of the 75 available meetings of the
ICSI MRDA corpus, two meetings of a different nature are

1 Two additional metrics found in the literature, the “recognition accu-
racy” as defined in [14], and the “lenient” metric [9] are not considered here,
since they do not take into account segmentation errors.

Words α θ NIST-SU DSER Strict DER
0 0.6 0.90 39.4 41.6 68.2 58.4
1 0.8 0.90 41.0 40.2 68.1 55.3
2 1.6 0.95 38.6 38.3 65.9 54.0
3 1.6 0.95 38.3 38.0 65.6 53.3
4 1.6 0.95 38.3 38.2 65.5 53.3

Table 1. The effect of increasing word context (Words) to
performance metrics. These measurements were made on the
validation set under reference conditions. Parameters α and θ
were tuned to optimize the Strict and the DER metric jointly.

excluded (Btr001, and Btr002). From the remaining meet-
ings, we use 51 for training, 11 for validation, and 11 for
evaluation. For the segmentation and classification of the DA
types, the available speech is first sorted according to speak-
ers, and then by time. The available DA types are mapped
to the following five distinct types: backchannels (B), dis-
ruptions (D), floorgrabbers (F), questions (Q), and statements
(S). Each system is then optimized and evaluated under both
reference and STT conditions. Under the reference condition
it is assumed that we have access to the true sequence of the
spoken words, while under the STT condition the recognizer’s
top-choice sequence of words is provided.

The sequential approach to segmentation and classifica-
tion of DAs described in [9] differs in two major aspects from
the system investigated in this paper. While the previous sys-
tem has the potential drawback of working in a sequential
fashion, it can take advantage of the fact that the full sequence
of words of a DA is available for classification. This is con-
trast to the method presented here that has the potential weak-
ness of making decisions relying on local evidence only.

For the approach presented in this paper, grid search was
applied to find optimal values for parameters α and θ on the
validation data for context sizes from zero up to four words.
Optimality was defined by the average of the resulting Strict
and DER error rates (see Table 1). Based on this optimiza-
tion step, a context size of four words was chosen for both
reference and STT condition. Under STT condition training
of the maximum entropy classifier on STT data lead to better
results than training on reference data. Looking at the optimal
choice for parameters α and θ for different amounts of word
context (as shown in Table 1) we can make two interesting
observations. First, the average of the Strict and the DER er-
ror rates monotonically falls for increasing amounts of word
context. Second, the log likelihood weight α for the integra-
tion of the pause duration also increases with the number of
context words for the pause modeling indicating a growing
reliability of the maximum entropy based classifier.

The test set results provided in Table 2 confirm the ex-
pected benefit of the use of word context for modeling of the
pause duration. A substantial improvement over the experi-
ments that did not include word context is achieved. Depend-
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Cond. System NIST-SU DSER Strict DER
[9] 34.5 40.8 64.4 54.4

Ref No context 35.5 39.7 65.0 55.9
With context 34.8 36.8 62.8 51.0
[9] 45.5 49.4 75.4 64.3

STT No context 49.7 48.0 76.2 65.1
With context 44.6 47.4 73.6 62.6

Table 2. Test set results for the NIST-SU and the DSER
segmentation error rates, and the Strict and DER joint seg-
mentation and classification error rates under both reference
and STT conditions.

ing on the experimental conditions and the joint error met-
ric absolute error rate reductions of 2.2% up to 4.9% were
found. Furthermore, the proposed integrated segmentation
and classification scheme also outperforms our previous re-
sults based on the sequential approach investigated in [9] by
1.6% to 3.4% absolute.

When the maximum entropy classifier is used alone for
joint segmentation and classification its performance is slightly
worse than [9] under reference condition but comparable un-
der STT condition (using a context size of 4 words) indicating
a robust performance under noisy conditions.

4. CONCLUSION AND OUTLOOK

We investigated the task of joint segmentation and classifica-
tion of of DAs by extending a scheme presented in [10] to
also make use of prosodic features, namely word pause dura-
tion. For this, we propose a modeling of word boundary types
based on both the duration of a pause and its surrounding
words. This is in contrast to previous work [4, 9] that treated
pause durations independently from surrounding words. Re-
sulting error rate reductions of 2.2% up to 4.9% (absolute)
over word context independent pause modeling confirm the
validity of the approach presented in this paper.

In future work we will integrate the proposed method into
the A* based approach presented in [15] that does not rely on
local evidence only but is able to take into account complete
DA hypotheses.
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