
CONCEALED KEY-PHRASE VERIFICATION

Juan M. Huerta

IBM T. J. Watson Research Center
Yorktown Heights, NY

ABSTRACT
It is a common task in conversational applications to validate

a claimed identity through utterance verification mechanisms;

for example, by asking for a password or a challenge ques-

tion. Sometimes, due to the private nature of the keyphrase, it

is desirable to impose restrictions on how this keyphrase, or

information that leads to it, is handled during the verification

process. In this paper we describe a method where the utter-

ance verification takes place in a concealed way, i.e., in a way

that the keyphrase cannot be inferred or obtained directly by

an intruder, from the decoding and application artifacts. We

achieve this by a novel algorithm based on matrix operations

in the verification network’s nodes. If the traversed path cor-

responds to the keyphrase, the annotation converges to the

dominant eigenvector of the occluded kernel matrix.

1. UNPROTECTED KEYPHRASE VERIFICATION

User verification is an often performed task in speech appli-

cations. When the application takes place in a distributed or

network environment (e.g., in a telephony environment [1])

the application designer needs to take into consideration the

possibility that the confidentiality of the data in the network or

in the application servers is vulnerable to network eavesdrop-

pers, intruders, or even malicious application analysts (we as-

sume that the intruder is in the network and is not an eaves-

dropper in the telephony circuit). If the network traffic is not

secure or encrypted, the intruder will be able to observe the

sequence of request and response cycles between the applica-

tion components (e.g., the voice browser, in scenario [1]) and

analyze markup, submitted values, and application artifacts;

even if the communication is encrypted, a typical speech ap-

plication leaves behind a substantial set of resources and ar-

tifacts (cached grammars, lexica, log files, etc.) which can

be collected and reverse engineered to extract or infer the au-

thentication information.

Due to industry trends like business process outsourcing

and application hosting, and to the emergence of sophisticated

analysis tools, more and more information is made available

by the application for system analysts and tools to perform

their jobs. The information that makes the application more

analyzable but it also makes it more prone to be reverse engi-

neered (e.g. [2]).

A common way to perform user verification, without us-

ing biometrics, is to verify a password or a multi-word utter-

ance (the keyphrase, denoted by uk) for a specific user userk

under the assumption that only this user will know it. Ex-

amples of what can constitute a good keyphrase are: date of

birth, social security number, amount of last account transac-

tion, etc. This process is called text-dependent user verifica-

tion.

A basic keyphrase verification algorithm can be formu-

lated as follows: let ûk be the recognition hypothesis to the

challenge question specific to userk, and âk be its seman-

tic annotation using the annotation grammar A (i.e., âk =
A(ûk)). This process can be done concurrently by the decod-

ing verification grammar G, which is the combination [3] of a

decoding network D and the semantic annotation network A.

Keyphrase validation is performed in terms of a distance com-

putation between âk and ak. This idea can be further elabo-

rated for enhanced efficiency, robustness and flexibility [4].

In an unprotected system, an intruder can obtain for a spe-

cific session âk and A, and based on session information can

associate this information with userk, and can compute A−1

and infer ûk = A−1(âk). For example, the annotation “A-03-

75” might be traceable to “august third 1975” if A is available

and easily invertible. In an unprotected system, an intruder

might be able to associate this date as the birthday of user

“John Doe”.

The above scenario provides a motivation for information

concealment so that an intruder cannot easily compromise the

verification process for a userk by observing any of the ap-

plication information or network traffic. We present a method

for concealing keyphrase verification; in our method, a veri-

fication grammar and a key are dynamically generated each

time a keyphrase verification task is performed, and in which

the semantic annotation takes place in the form of matrix-

vector operations. If the keyphrase is correct, the annotation

will converge to the key. In this way, the client can generate

annotations robust to reverse engineering. An intruder capa-

ble of observing network traffic, voice browser markup, an-

notation grammars, annotation scripts, and the resulting an-

notation hypothesis will not be able to infer the keyphrase. In

the next two sections we describe our method in detail.

I ­ 5771­4244­0469­X/06/$20.00 ©2006 IEEE ICASSP 2006

2. CONCEALING VERIFICATION

2.1. Desirable Features

In order to prevent an intruder with capabilities like the ones

described in section 1 compromise the keyphrase of userk, it

is desirable that a system has the following features:

• The correct keyphrase uk or the path traversed by the correct

hypothesis in the decoding graph G cannot be inferred stati-

cally by looking at the resulting annotation âk or by statically

analyzing the graph (A, G, or D).

• The correct keyphrase uk cannot be reverse-engineered or ob-

tained from decoding artifacts, including graphs, grammars,

logs, annotations, session information, network traffic etc.

• The probability of finding the uk by trial and error (even after

observing the user authenticate in multiple instances) is low.

• The annotation function A provides an annotation âk is a

smooth function of uk, i.e., small deviations from the cor-

rect utterance result in small distances between hypothesized

and true annotations, and so forth.

• Having observed several times the keyphrase’s annotation for

userk in various instances would not be of help to produce a

correct annotation for userk in session n.

2.2. A Structured run-time environment

To facilitate the above features, we propose structuring con-

versational applications in a way that decouples the security

handling subsystem from the interaction subsystem [5]. Thus

the application will have two parts: a secure and an unsecure

part. We assume that the security handling subsystem (the se-

cure part of the application) is responsible for the generation

of the key and verification grammar Gk from the cleartext

keyphrase for each user k; while the interaction part of the

application (the unsecure part) is responsible for handling the

user’s response, obtaining its annotation and submitting this

annotation to the secure part of the system, where the com-

parison between key and annotation is performed.

The secure part can be a commercial identity management

solution, while the unsecure part corresponds to the voice

browser, the recognition engine, and application components

that handle interaction (server pages etc.).

The security subsystem can make G not only user depen-

dent, but also session dependent, thus Gk,n will be particular

to every user k and every session n. They key and the annota-

tion will also be session dependent. We will describe later on

how to generate Gk,n. This grammar needs to be a one-way

function, i.e., it will be hard to find uk,n = A−1(uk,n) given

uk,n and Gk,n.

As we said, the unsecure part of the application takes Gk,n

and performs recognition of the utterance of the grammar, and

obtains and annotation âk,n which is compared against the

key ak,n in the secure part of the application. The keyphrase

annotation ak,n (the key) is the annotation of utterance uk

when grammar Gk,n is used, and because we assume Gk,n �=

Gk,m when n �= m, (i.e., the grammar changes in every ses-

sion for every user), knowing the annotation ak,n for user k
during session n is of no use in session m.

The question is how to generate Gn so that âk,n has a

smooth error function, and Gn is robuts to reverse engineer-

ing. We now discuss a method to produce these grammars.

3. CONCEALING KEY-PHRASE IN GRAMMARS

3.1. Verification Grammar Essentials

The task of keyphrase verification has been previously stud-

ied (e.g., [4]). We briefly describe here some previously es-

tablished concepts that are important in our analysis.

Verification can be carried out as recognition, with a par-

ticular type of grammar: a verification grammar. We define

a verification grammar G as a decoding graph in which the

keyphrase uk can be recognized, resulting in a semantic an-

notation ak. In [4] the authors describe a hypothesis test-

ing method for verification grammars, as a way to accept the

user’s utterance as a keyphrase match. A keyphrase verifica-

tion grammar needs to contain anti-subword models [4] with

their corresponding semantic interpretation.

In our paper we assume that the perplexity of the recog-

nizer is high in order to prevent intruders to exhaustively try

the list of entries in the grammar G.

3.2. Embedding vector operations in network nodes

We describe our approach to substituting simple semantic an-

notations in a verification network G for node vector opera-

tions on a given vector.

Let path Pk = {p1, p2, ..., pL} with 0 ≤ j ≤ L, denote

the path of nodes traversed in annotation network A by the

observed utterance ûk.

Let network A be of size Z(i.e., have Z nodes) and with

each node Ni ∈ A we associate a vector Yi ∈ �dxd.

Let seed vector x0 be a random vector of dimension d.

The annotation performed by A corresponding to an ob-

served utterance ûk will be âk. Assume that ûk results in

traversed path Pk when A is used, then âk is computed in the

following way:

x̄k+1 = Ykx̄k withnodek ∈ P and 0 ≤ k ≤ L;

and âk = x̄L;

In other words,

âk =
∏

(Yix0) ;

Thus, A is an annotation grammar which instead of hav-

ing words or symbols in the nodes, performs a matrix mul-

tiplication on a input vector x0 and returns as annotation the

vector âk.

Verification is thus performed by computing the distance

between the annotation and key vectors:

d = cosine distance(key, âk)

I ­ 578

3.3. Properties of the annotation vector when all nodes in
the verification path share matrix K

Let matrix K be a symmetric matrix. Let the nodes in the

keyphrase path P share K as their annotation matrix. Then

âk, as defined in the previous section, will converge to the

eigenvector corresponding to the largest eigenvalue of K (the

dominant eigenvector). This is a fundamental principle in lin-

ear algebra (power method [6]).

As long as the dominant eigenvalue of K is unique and the

inner product of the key vector and x0 is not zero (a condition

that the secure subsystem should verify when choosing K),

then xL → key as L → ∞ linearly with convergence factor

max{λd−1/λd,, |λ1|/λd}.

We can choose K so that it results in a desirable rate of

convergence, given L (the length of the path P). We will refer

to matrix K as the kernel of the keyphrase path and its dom-

inant eigenvector becomes the key of K . Additionally, this

algorithm allow us to use any real vector as the seed vector

x0 in the annotation process and the annotation will converge

to the key if P is traversed.

The seed will converge to the key with the rate described

above. The convergence rate is a function of the distribution

of the eigenvalues of the kernel. Given a random seed, and

a rate of convergence we will achieve an arbitrary distance

to the key with a probability inversely proportional to the L.

Thus, we need to balance then the target chain length and the

choice of kernel K as to obtain the desired probability of false

acceptances and false rejections. For shorter chains (e.g., zip

codes) we want the rate of convergence âk to converge to the

key K faster, for longer chains (e.g., social security numbers)

we want it slower, as premature convergence will imply that

we are only using prefixes of the keyphrase for verification.

Manufacturing K to have real eivenvalues with desired con-

vergence rates is a simple application of the Spectral Theo-

rem. Additionally, K should be chosen as to ensure stability

of the computation of its eigenvectors.

Obviously, the nodes that are not in the keyprhase path

can be chosen in a way that their eigenvalues corresponding to

their latest eigenvectors are not close, from a cosine-distance

perspective, of the key of K . These matrices are responsible

of disrupting the convergence process of xi.

3.4. Random-Seed Verification Grammars

In section 2.1 we determined that an intruder that has ob-

served several times the keyphrase’s annotation (or key) for

userk in various sessions should not be able to easily produce

the correct annotation for userk in session n. This means that

even for a specific user, K (the keyphrase kernel) needs to

change in every session so that the key of K (and the guessed

âk) changes at every time.

Given that K and x0 are generated randomly every time

we perform verification, we can expect that x0 will allow for

correct phrase verification with a given probability. When P

is traversed correctly then âk = KL ∗ x0 . The probability of

a correct Verification is then,

P (cos distance(key, KL ∗ x0) > Threshold).
It is matter of manipulating the eigenvalues of K to en-

sure that the probability defined above is acceptable given the

security requirements of our application.

3.5. Concealing the kernel Matrix via occluding Matrices

If we provide A as a verification grammar, as we have so far

discussed, it becomes trivial to an intruder to hypothesize the

correct utterance easily: find the node matrices that repeat

themselves in connected paths from beginning to end nodes

most frequently and try their dominant eigenvalues as keys

(A in our method appears L times). It is necessary to occlude
K , which effectively means that all the node grammars have

to look different to an observer, yet the correct path will make

the seed vector converge to the key vector.

We achieve this by providing the following annotation

matrices to the nodes of A as follows:

For nodes in the path P ,

Yi = G−1
i−1KGi when Yi ∈ P and 2 ≤ i ≤ L − 1,

Y1 = KG1 when Y1 ∈ P .

YL = G−1
L−1K when YL ∈ P ,

And for nodes not in the path P ,

Yj = Gj .

Where all Gi and Gj are random, non-symmetric matri-

ces. The occluding matrices (Gi, occurring in P) need to be

invertible.

Effectively, what we have done is introduce matrices and

their inverses that cancel each other (if the path is P) and

leave just the kernel matrix in the path.

An intruder who is trying to reverse engineer the gram-

mar would have to find the path in A of length L which is

factorizable as follows:

(XG1)(G
−1
1 XG2)(G

−1
2 XG3) · · · (G−1

L−2XGL−1)(G
−1
L−1X)

For such path, the intruder would postulate X as the ker-

nel, and propose its dominant eigenvector as the key and save

the path associated with userk. Even if such factorization was

at all feasible, which is not practical, the secure subsystem can

generate a grammar with a large number of false paths which

factorize as above. The correct path would only be one of

many paths with this type of factorization.

3.6. Putting it all together

When an application needs to verify that the current user knows

the keyphrase utterance for userk the following steps ensue:

• The secure subsystem retrieves the keyphrase and assembles

a general verification network A.

• The secure subsystem generates symmetric random vector K
with target eigenvalue distribution and obtains its dominant

eigenvector, the key

I ­ 579

• The secure subsystem associates matrices in each node in A:

occluded K for nodes in P and random matrices otherwise.

• The secure subsystem publishes A and the challenge question

to the unsecure subsystem, which in turn makes these infor-

mation available to the interaction component.

• The user provides an utterance to the challenge question, which

determines an annotation path A. The annotation algorithm

generates a random seed and traversing the path performs the

matrix operations of the path in the random seed.

• The resulting vector is sent to the secure subsystem which

computes the cosine distance between key and received vec-

tor. It determines with a certain confidence whether or not the

user uttered the keyphrase.

An intruder would need to find the inverse of A given

the resulting vector, or statically perform the factorization de-

scribed in section 3.5, both computationally impractical.

4. EVALUATION

In this section we present the results of a simulation exper-

iment in which we evaluate different verification configura-

tions assuming no recognition errors (recognition errors will

mostly impact the false rejection rate which does not com-

promise security but affects user experience). We evaluate

premature acceptance rates given various false rejection rates.

We also observe the tradeoff that exists between computation

time and probability of error.

Table 1 shows our simulation experiment results. Each

row correspond to a specific condition. For each condition

we generated 1000 verification trials. A verification trial cor-

responds to the generation of a random kernel matrix, adjust-

ing its eigenvalues to match the target ratio, generate a ran-

dom seed vector, and compute the output vector given the de-

coding path, and evaluate the cosine distance for each prefix

of the path traversed between the annotation vector and the

key; then, for each condition compute the distance threshold

that results in a desired false reject rate of all the trials (1,2,5

and 10%) and using that threshold count how many times we

reached this threshold prematurely (before Phrase Length).

Premature acceptance rates are shown in columns 5 to 8. The

conditions parameters in the table are as follows: column 1

corresponds to the size of the keyphrase (5, 7 and 9, e.g.,

zip codes, telephones and social security numbers), column

2 corresponds to the dimensionality of the matrix, column 3

corresponds to the ratio between the dominant and smallest

eigenvalues, column 4 shows the time (in CPU units) to run

1000 scenarios, and columns 5 through 8 the premature ac-

ceptance rates for the 4 distance threshold levels that result in

1%, 2%, 5% and 10% false rejection rates respectively.

We observed that the dimensionality of the matrix has an

impact on the computation time (as finding the eigendecom-

position of large matrices is more expensive), however, for the

same eigenvalue ratio the false acceptance rate of large matri-

ces is smaller than for smaller matrices. The false acceptance

Table 1. Simulation Results

Phr. Mat. Eig. Time PA w.

Len. Dim. ratio FR=1% FR=2% FR=5% FR=10%

5 9 1.7 0.98 17.0 15.0 9.7 7.3

7 9 1.7 0.99 11.6 10.2 7.6 5.4

9 9 1.7 1.08 8.3 7.3 5.6 4.1

5 15 1.7 1.77 9.2 6.6 4.5 2.7

7 15 1.7 1.77 6.2 4.7 3.3 1.8

9 15 1.7 1.86 5.6 3.6 2.4 1.6

5 15 2.9 1.62 0.3 0.2 0.1 0.1

7 15 2.9 1.76 0.2 0.1 0.0 0.0

9 15 2.9 1.81 0.4 0.2 0.1 0.1

rate is larger for long chains given false rejection rate. Overall

the most secure choice is large matrices with large eigenvalue

ratios and large verification chains, which result in very little

premature false acceptance, even with very low false reject

rates. This, of course, corresponds to the most computation-

ally expensive cost.

5. CONCLUSION

We have shown a method to conceal a path in a graph that

performs vector operations in its nodes. We have described

how this is a robust method for a verification system in which

a secure subsystem in an application does not want to disclose

a keyphrase to a non-secure subsystem in the application. The

unsecure system will not be able to reverse engineer this graph

to obtain the keyphrase or the key, even from correct annota-

tions. This can be a solid foundation for keyphrase verifica-

tion systems, particularly in environments in which privacy is

a concern (e.g., hosting, outsourcing, SOA etc.).

6. REFERENCES

[1] B. Lucas, “Voicexml for web-based distributed conversational

applications,” Communications of the ACM, vol. 43.

[2] A. Marchetto C. Bellettini and A. Trentini, “Webuml: reverse

engineering of web applications,” in Proceedings of the 2004
ACM symposium on Applied computing, Nicosia, Cyprus.

[3] M. Mohri, F. Pereira, and M. Riley, “Weighted finite state trans-

ducers in speech recognition,” in ISCA ITRW Automatic Speech
Recognition: Challenges for the Millenium.

[4] T. Kawahara, C.-H. Lee, and B.-H. Juang, “Key-phrase detec-

tion and verification for flexible speech understanding,” in Proc.
ICSLP ’96, Philadelphia, PA, vol. 2.

[5] B. Pfitzmann and M. Waidner, “Federated identity-management

protocols,” in 11th International Workshop on Security Proto-
cols. Springer-Verlag.

[6] B. N. Parlett, The Symmetric Eigenvalue Problem, Prentice-

Hall Series in Computational Mathematics, Englewood Cliffs,

NJ, 1980.

I ­ 580

