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ABSTRACT

A generative statistical model of speech-to-text translation is de-

veloped as an extension of existing models of phrase-based text

translation. Speech is translated by mapping ASR word lattices to

lattices of phrase sequences which are then translated using oper-

ations developed for text translation. Performance is reported on

Chinese to English translation of Mandarin Broadcast News.

1. INTRODUCTION

Statistical speech translation systems vary in the degree to which

the Statistical Machine Translation (SMT) system and the auto-

matic speech recognition (ASR) component are integrated within

the overall translation process. In the ‘pipeline’ approach to speech

translation, the transcription produced by ASR is translated as if it

were any fluent, written sentence in the foreign language. This is

a reasonable first approach to speech translation, and if ASR sys-

tems performed flawlessly, it would be perfectly adequate. How-

ever ASR systems are imperfect, and in imperfect statistical in-

formation processing systems it is generally desirable that initial

processing procedures should pass on as much information as pos-

sible for use by subsequent stages.

With this motivation, speech translation architectures have been

developed within which the ASR and SMT systems are tightly cou-
pled (e.g. [1, 2, 3]). The objective is to allow the SMT system to

search among many likely ASR hypotheses and hopefully produce

a better translation than if it had been restricted to the single, best

ASR hypothesis. In practice, the close coupling of ASR and MT

can be realized by translating ASR N-Best lists [4, 5] or word lat-

tices [6, 7]. N-Best translation is straightforward: a text-based

SMT system can be used without modification to translate each

entry, and the resulting translations can be sorted by some combi-

nation of ASR and SMT scores.

Although it is a complicated modeling and implementation

problem, lattice-based translation offers potential advantages over

translation of N-Best lists. Lattices provide larger search spaces,

as well as detailed, sub-sentential information, such as word-level

acoustic and language model scores, that can be passed directly to

the SMT system. However it is not trivial to obtain gains in lattice-

based translation relative to simply translating the ASR transcrip-

tion. Initial attempts at incorporating word lattice information in

translation did not yield consistent improvements in translation
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performance [6]. However approaches were subsequently devel-

oped by which lattices and confusion networks can be translated

with improvements in translation quality [7, 8].

Motivated by this prior work, we present a novel approach to

statistical phrase-based speech translation. This approach is based

on a generative, source-channel model of translation, similar in

spirit to the modeling approaches that underly HMM-based ASR

systems - in fact, our model of speech-to-text translation contains

the acoustic models of a large vocabulary ASR system as one of its

components. We develop this model of speech-to-text translation

as a direct extension of the phrase-based models used in our text

translation systems, and we will show how lattice-based speech-

to-text translation can be carried out easily, using the existing text-

based translation systems essentially without modification.

We begin with a review of the underlying phrase-based trans-

lation model, and then extend it to speech translation by incorpo-

rating the acoustic models from a target language ASR system.

2. PHRASE-BASED GENERATIVE MODELS
OF SPEECH TRANSLATION

The Translation Template Model (TTM) [9, 10] is a generative

model of translation that consists of a series of transformative oper-

ations specified by conditional probability distributions. A (simpli-

fied) description of the generative process has the following steps.

Step 1 The source language sentence s1, . . . , sI is generated by

the Source Language Model, P (sI
1).

Step 2 The source language sentence is segmented into a series

of source language phrases, uK
1 . There are many possible

sequences of phrases that can be derived from a single sen-

tence, as defined by the Source Phrase Segmentation distri-

bution, P (uK
1 , K|sI

1).

Step 3 The sequences of source language phrases are translated

into target language phrase sequences, xK
1 . The target lan-

guage phrases are generated in source language phrase or-

der, and each was generated by a single source phrase. Since

source language phrases can generate multiple target phrases,

the generation of target phrase sequences is specified by the

Phrase Translation distribution, P (xK
1 |uK

1 ).

Step 4 New target language phrases are allowed to insert them-

selves into the target language sequences which are then

(optionally) reordered; the tendency towards phrase inser-

tion is controlled by a single parameter, the Phrase Exclu-
sion Probability. This generates modified target language
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phrase sequences, vR
1 , under the Phrase Movement and In-

sertion distribution, P (vR
1 |xK

1 , uK
1 ).

Step 5 The target language phrase sequences are transformed to

target language word sequences, t1, . . . , tJ , under the Tar-
get Phrase Segmentation distribution, P (tJ

1 |vR
1 ). In prac-

tice, this is a degenerate transformation which maps every

target phrase sequence to its unique word sequence.

Taken together, these distributions form a joint probability distri-

bution over the source and target language sentences, and over the

possible intermediate source and target phrase sequences. More-

over, the component distributions are formulated so that each can

be implemented as a Weighted Finite State Machine (WFSM) [11,

12]. The component distributions form P (tJ
1 , vR

1 , xK
1 , uK

1 , sI
1) as

P (tJ
1 |vR

1 )
Ω

P (vR
1 |xK

1 , uK
1 )

Φ
P (xK

1 |uK
1 )

R
P (uK

1 |sI
1)

W
P (sI

1)
G

where the symbol beneath each distribution denotes its FSM.

To translate a given target language sentence tJ
1 into the source

language, we construct an acceptor T for the target sentence. In

theory, we could then create a lattice of translations via the follow-

ing sequence of FSM compositions

T = G ◦ W ◦ R ◦ Φ ◦ Ω ◦ T

and extract the translation bsI
1 as the path in the translation lattice T

with the least cost (negative log likelihood), to approximate bsI
1 =

argmaxsI
1

P (tJ
1 |sI

1) P (sI
1) as

bsI
1 = argmax

sI
1

{ max
vR
1 ,xK

1 ,uK
1 ,K

P (tJ
1 , vR

1 , xK
1 , uK

1 , sI
1)} .

In practice, we perform translation in distinct steps. We first

generate the target phrase lattice, Q, which is a WFSM acceptor

for all phrase sequences in the target sentence. Q is found by com-

position Ω ◦ T followed by projection onto the input side of the

resulting transducer. We next list all the unique target phrases in

Q ; these are the phrases for which source language translations

are needed, and candidate source language phrases are extracted

for them from bilingual training text [13, 14]. This collection of

source and target translation pairs is the phrase pair inventory.

At this point, we have the statistics to construct a compact

Phrase Translation transducer R for the sentence to be translated,

as well as the Source Phrase Segmentation transducer W and the

reordering and insertion transducer, Φ [9]. The translation lattice

is then generated as

T = G|{z}
Source

Language

Model

◦ W ◦ R ◦ Φ| {z }
Source Word to

Target Phrase

Translation

◦ Q|{z}
Target

Phrase

Acceptor

The point to stress here is that translation is actually carried out

through a series of FSM compositions acting on a phrase lattice,

i.e. an acceptor of target language phrases. In text translation, this

accepts all the phrase sequences that can be derived from the single

sentence to be translated. To translate speech, we can simply use

an acceptor for all the target language phrase sequences in an ASR

word lattice. We now extend the model formulation to support this.

2.1. Speech Translation from ASR Phrase Lattices

We assume we have an ASR system with target language acoustic

models P (A|tJ
1 ) and a target language model. To describe how

source language text might generate a a target language utterance

A, we define P (A, tJ
1 , vR

1 , xK
1 , uK

1 , sI
1) as

P (A|tJ
1 )

L
P (tJ

1 |vR
1 )

Ω
P (vR

1 |xK
1 , uK

1 )
Φ

P (xK
1 |uK

1 )
R

P (uK
1 |sI

1)
W

P (sI
1)

G

where L is an weighted acceptor containing the word sequences

and acoustic scores from an lattice generated by the ASR system

over the utterance A. In translation from speech, the ideal transla-

tion bsI
1 = argmaxsI

1
P (A|sI

1)P (sI
1) is approximated as

bsI
1 = argmax

sI
1

{ max
tJ
1 ,vR

1 ,xK
1 ,uK

1 ,K
P (A, tJ

1 , vR
1 , xK

1 , uK
1 , sI

1) } .

As an aside, this differs from translation of the ASR transcript,

which would be btJ
1 = argmaxtJ

1
P (A, tJ

1 )

bsI
1 = argmax

sI
1

{ max
vR
1 ,xK

1 ,uK
1 ,K

P ( btJ
1 , vR

1 , xK
1 , uK

1 , sI
1) } .

We briefly digress to contrast our model to the previously men-

tioned lattice-based speech translation approaches [7, 8]. While

different, those are based on joint generation and translation, i.e. a

parameterized distribution Pλ(tJ
1 , sI

1|A) describes the simultane-

ous generation of a source sentence and its translation. This differs

from generative approaches, which rely on distinct parameterized

distributions, e.g. Pλ1(A|tJ
1 )Pλ2(t

J
1 |sI

1)Pλ3(s
I
1). The two ap-

proaches have their advantages and disadvantages, but it is worth

noting that they arise from fundamentally different formulations,

and involve quite different estimation and decoding procedures.

Resuming the discussion of implementing the speech transla-

tion process via WFSMs, we could replace the (unweighted) ac-

ceptor T constructed for a single target sentence to be translated

by the (weighted) acceptor for the word strings in the ASR lattice

T = G ◦ W ◦ R ◦ Φ ◦ Ω ◦ L .

But what is done follows the text translation approach: the Target

Phrase Segmentation transducer is applied to the word lattice ac-

ceptor, as Ω◦L, to generate a lattice of phrases, Q. The translation

lattice is then found as T = G◦W ◦R◦Φ◦Q, and the translation
bsI
1 is found as the minimum cost path through T .

There are of course modeling and implementation issues that

arise in translating ASR lattices relative to translating individual

text strings. For example, it is considerably easier to enumer-

ate all the phrases in a sentence than in a word lattice. This and

other issues are non-trivial modeling problems, and our current

approaches to them are discussed next. However, despite these

modeling challenges, we emphasize that this approach to speech

translation neatly avoids the difficult problem of developing statis-

tical translation systems that can process ASR word lattices. That

problem is replaced instead by a modeling problem, namely how

to extract phrase sequences from word lattices.

2.2. Transforming ASR Word Lattices into Phrase Lattices

We describe our initial approach to transforming ASR word lat-

tices into phrase lattices suitable for translation by the TTM. For-

mally, we would like to extract the target phrase sequences under
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the posterior distribution provided by the ASR system:

Q = P (vR
1 |A) =

P
tJ
1

P (vR
1 |tJ

1 ) P (A|tJ
1 ) P (tJ

1 )

P (A)

based on the acoustic scores P (A|tJ
1 ) and the target language model

scores P (tJ
1 ). The latter does not appear in the formulation of

overall translation; however we include it simply because it im-

proves translation performance, and note that proper inclusion of

the target language model will require extension of the TTM itself.

In addition to words, ASR lattices can contain silence mark-

ers, fillers, and sentence breaks. Since these do not occur within

sentences in our bilingual text collections, it is difficult to extract

phrases that cover them. We map these symbols to NULL. Conse-

quently, some of the phrases extracted will span what the ASR sys-

tem hypothesized as sentence breaks. This is less than ideal, and

we note this as an opportunity to incorporate metadata extraction

techniques to guide phrase extraction through improved detection

of phrase and sentence boundaries [15].

After this initial processing, the list of all phrases is extracted

from the word lattices, as the list of all phrases is extracted from the

target sentence in text translation. To extract the phrases from the

ASR word lattice, we use the GRM Library grmcount tool which

counts subsequences in a WFSM [16].

3. SPEECH TO TEXT TRANSLATION PERFORMANCE

We investigate the performance of our systems on the TC-STAR

Chinese to English (C-E) Broadcast News translation task 1.

3.1. Mandarin Broadcast News Translation Task Description

The speech-to-text translation corpus is based on six Mandarin

news broadcasts which were manually segmented and transcribed

into Chinese sentences for use as reference transcriptions for ASR

system evaluation. Two English translations of each Chinese sen-

tence transcription were commissioned for translation system scor-

ing. Three documents form the Development Set, and the other

three the Evaluation Set, as specified by the 2005 TC-STAR evalu-

ation; they contain 525 and 494 sentences, respectively. The over-

all statistics are given in Table 1.

C E-1 E-2

Dev 3,156 / 12,648 3,232 / 12,865 3,107 / 12,177

Eval 2,993 / 13,023 2,809 / 13,199 2,771 / 13,101

Table 1. Dev and Eval Set Vocabularies (types/tokens).

In addition to the six audio documents, their Chinese text tran-

scriptions, and their corresponding English translations, we also

have Mandarin ASR lattices in HTK format [17]. These were

generated by the LIMSI Mandarin Broadcast News System [18]

incorporating cross-word triphone acoustic models and a 4-gram

language model.

The LIMSI Mandarin Broadcast News ASR system was ap-

plied to the complete audio document. The system was allowed

generate its own acoustic segmentation independently of the man-

ual acoustic segmentation performed during the initial transcrip-

tion. Corresponding to this automatic segmentation, there are 231

ASR lattices for the Dev set and 181 ASR lattices for the Eval set.

1http://www.tc-star.org

Since the audio segmentation was performed automatically by

the ASR system, the number of lattices is not the same as the

number of manually segmented sentences in the reference tran-

scriptions. Prior to scoring, the ASR hypotheses and the reference

transcriptions are each concatenated in temporal order to form a

single, long document. The ASR Character Error Rate (CER) over

the Dev set was found to be 8.7%.

3.2. Mandarin Broadcast News Phrase-Based SMT System

Translation experiments are based on the TTM phrase-based SMT

system [9, 10], and the experiments reported here are performed

on the basic system submitted by JHU/CU to the 2005 TC-STAR

and NIST Chinese-English MT evaluations.

The underlying training bitext consists of C-E parallel corpora

provided by LDC (http://www.ldc.org), mainly consisting of FBIS,

Xinhua, Hong Kong News, Sinorama news sources, the Chinese

Treebank, and the Hong Kong Hansards and UN proceedings; the

bitext contains 175M Chinese words and 200M English words.

The Chinese text was word segmented using the LDC segmenter

followed by rule-based number grouping. The English text was

processed using a slightly modified version of the tokenizer dis-

tributed in the NIST MT-eval toolkit [19].

The documents were aligned at the sentence and sub-sentence

level [20] to produce 7M bilingual sentence or subsentence chunk

pairs. The chunk-aligned bitext was then aligned at the word level

under the Word-to-Phrase alignment model [14]. Phrase-pairs were

extracted by commonly used heuristics [13]; phrase pairs were ex-

tracted only as needed to cover the Chinese phrases to be trans-

lated. This process was complicated by inconsistent Chinese tok-

enization and word segmentation schemes between the ASR sys-

tem and the SMT bitext; this is discussed in the next section.

The English language model training data consists of 380M

words of text from the LDC English Gigaword (AFP and Xinhua),

the English side of FBIS, and the online archives of People’s Daily.

On the C-E task we estimated an interpolated 3-gram target LM

with uniform weights over the three LM English sources. For LM

training, the corpus was lower-cased and punctuation removed.

Prior to translation, the Chinese ASR lattices were converted

into weighted finite state acceptors in AT&T FSM format [11, 12];

time information was removed, and the lattices were reduced in

size by applying ε-removal, determinization, and minimization [11,

12]. Lattices were in joint-likelihood form with acoustic and lan-

guage model scores were combined using a Word Insertion Penalty

and a Grammar Scale Factor optimized for ASR Word Error Rate

by LIMSI. The ASR word lattices are pruned as necessary, and

after composition with the target phrase segmentation transducer,

phrases are extracted up to 5 target word in length. Parameters

were optimized over the dev set.

Translation performance was measured under the BLEU met-

ric [21] with respect to the two sets of English transcriptions. Cas-

ing was preserved in the reference translation, and the SMT output

was re-cased using the SRILM disambig tool [22] with a modified

Kneser-Ney 3-gram LM trained over the English LM text.

Baseline translation performance is reported by applying var-

ious translation system configurations to the Chinese reference

transcriptions. In these baseline experiments, BLEU scores are

reported at both the sentence level (sBLEU) and document level

(dBLEU). However, since there is no easily found correspondence

between the ASR acoustic segmentation and the manual segmen-

tation from which the sentence level translations are derived, only
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Mandarin Source DEV EVAL

Monotone Ref. Transcription 12.8 / 16.1 14.1 / 18.8

Phrase ASR 1-Best 14.8 13.6

Order ASR lattice 15.0 13.8

MJ-1 VT Ref. Transcription 12.9 / 16.1 14.1 / 19.3

Phrase ASR 1-Best 15. 0 13.8

Reordering ASR lattice 15.1 14.0

Table 2. Mandarin Broadcast News Translation Performance.

dBLEU scores are reported for the speech translation experiments.

Translation performance is reported in Table 2 over the man-

ual reference transcriptions (sBLEU/dBLEU scores are provided),

the ASR 1-Best hypotheses, and the ASR lattices. Two configura-

tions of the TTM are investigated. In the first, target phrases appear

in monotone phrase order, i.e. Chinese phrases appear in English

phrase order. In the second, MJ-1 VT phrase reordering allows

target phrases swap places with their immediate neighbors as de-

termined by reordering probabilities estimated over bitext (with a

backoff swap probability of 0.02) [10]. Although improvements

are not large, we find improvements in all scenarios by translating

ASR lattices instead of ASR 1-Best hypothesis.

In comparing the speech and text translation systems, we note

that from the Dev Set reference transcriptions we extract 44,744

Chinese phrases; 11,617 of these appear in the bitext, accompa-

nied by 59,589 English phrases (after pruning). By comparison,

we extract 58,395 Chinese phrases from the ASR lattices - 1.3

times as many phrases as appear in the reference transcriptions.

However, we are able to find only 12,983 of these Chinese phrases

in the bitext, and these are accompanied by 60,574 English trans-

lations. In summary, we find that in translating the lattice we have

increased the number of Chinese phrases and their English alter-

natives only slightly. There are two factors at work. The first is

that our phrase extraction procedure was developed for phrases ex-

tracted from text; different modeling procedure will be needed to

translate phrases hypothesized by ASR systems, which tend to be

disfluent and are relatively unlikely to appear in training bitext text.

The second, dominant, problem is the mismatch in tokenization

and word segmentation between the ASR system and the Chinese

side of the bitext. We anticipate performance improvements when

we integrate ASR and SMT systems constructed with consistent

text formatting.

4. CONCLUSION

We have presented a modeling framework for statistical speech-

to-text translation as an extension of the phrase-based TTM text

translation model. This formulation leads to a tight coupling of

the ASR and SMT subsystems, both as statistical models and as

implemented by the WFSM phrase-based translation system. We

have identified and described weaknesses in this initial formula-

tion and its implementation, and we intend to improve upon these

in subsequent work. Mandarin-to-English Broadcast News trans-

lation experiments demonstrate that the approach is feasible, and

we anticipate further improvements in translation performance by

integrated development of the component ASR and SMT systems.
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