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ABSTRACT

This paper compares the performance of two types of Prosodic
Feature Models (PFMs) in a sentence boundary detection task.
Specifically, systems are compared that use discriminatively trained
Gaussian Mixture Models (MMI-GMMs) and CART-Style Deci-
sion Trees (CDT-PFMs), along with task-specific language mod-
els, in a lattice-based decoding framework in order automatically
to insert Slash Unit (SU) boundaries into Automatic Speech Recog-
nition (ASR) transcriptions of input audio files. It is shown that a
system which uses MMI-GMMs performs as well as a system that
uses conventional CDT-PFMs. In addition, it is shown that, when
the CDT-PFM and MMI-GMM systems are combined by taking
weighted averages of their respective probability streams, Error
rate improvements of up to 0.8% abs over the CDT-PFM baseline
can be obtained for four different test sets.

1. INTRODUCTION

In recent years it has become desirable to produce ASR output
that contains information concerning sentence boundaries [9] [12]
[13]. The DARPA Effective, Affordable, Reusable Speech-to-Text
(EARS) project defined sentence boundary detection in terms of
Slash Units (SUs). SUs are sentence-like units, not traditional
‘grammatical’ sentences, and therefore they can be identified even
in informal Conversational Telephone Speech (CTS). In recent stud-
ies, it has been demonstrated that information about SU boundaries
in ASR transcriptions can improve text readability [2]. The EARS
SU Boundary Detection (SUBD) task requires each SU endpoint
to be detected in an input signal, and therefore an SUBD system
must output a start time and duration for each SU. In addition,
the SUs must be subclassified into one of the following subtypes:
statement, question, incomplete, and backchannel [3].

This paper compares the performance of MMI-GMMs and
CDT-PFMs. Accordingly, a CDT-PFM SUBD system is described;
MMI-GMMs are introduced as a contrasting modelling strategy,
and the performance of the CDT-PFM and MMI-GMM systems
is compared. Results are also given for systems that combine the
CDT-PFM and MMI-GMM modelling strategies. It is shown that
simple system combination approaches can produce SU Error rates
that are up to 0.8% lower than those produced by either the CDT-
PFM and MMI-GMM systems in isolation.

This work was partly supported by DARPA grant MDA972-02-1-0013
and partly by the GALE programme via a subcontract to BBN Technolo-
gies. The paper does not necessarily reflect the position or the policy of the
US Government and no official endorsement should be inferred.

2. SUBD TRAINING AND TEST DATA

The SUBD systems were built using 40 hours of training data re-
ferred to as the ctsrt04 data which was prepared for the EARS
project and annotated in accordance with V6.2 of the EARS Meta-
Data Extraction (MDE) annotation specification [3]. System per-
formance was explored using four test sets. The dev03f and eval03s
data sets (c.1.5 hours each) constituted the development and eval-
uation data sets for the EARS Rich Transcription 2003 Fall Eval-
uation (RT-03f) [5], while the ctsdev04 and eval04f data sets (c.3
hours each) were prepared as the development and evaluation sets
for Rich Transcription 2004 Evaluation (RT-04) [6]. The test sets
were all annotated using V6.2 of the EARS MDE annotation spec-
ification [3].

Each token in the ctsrt04 data can be classified as marking ei-
ther an SU boundary of a specific subtype or else a non-SU bound-
ary depending upon whether it constitutes the final element in an
SU or not. Importantly, the ctsrt04 data is dominated by non-SU
tokens, as indicated in Table 1.

SU Subtype # Tokens % of ctsrt04 Data
non-SU 404,464 86.8%

statement 36,045 7.7%
backchannel 18,274 3.9%
incomplete 4,378 0.9%
question 3,065 0.7%

Table 1. SU subtype tokens in the ctsrt04 data.

As a result, it is common practice to downsample the training
data when PFMs are constructed so that the number of non-SU
tokens is equal to the total number of SU tokens [12] [13]. In this
paper, the downsampled subset of the total training data will be
referred to as the ctsrt04 ds data. SU subtype information for the
ctsrt04 ds data is given in Table 2.

SU Subtype # Tokens % of ctsrt04 ds Data
non-SU 61,762 50.0%

statement 36,045 29.2%
backchannel 18,274 14.8%
incomplete 4,378 3.5%
question 3,065 2.5%

Table 2. SU subtype tokens in the ctsrt04 ds data.

I ­ 549
1­4244­0469­X/06/$20.00
©2006 British Crown Copyright ICASSP 2006



3. SUBD SYSTEM OVERVIEW

The SUBD systems discussed in this paper all use as input the
CUED RT-04 CTS 20xRT ASR output, which provides hypothe-
sised token sequences and timing information for the input audio
files [12] [1]. The main components of SUBD system are the fol-
lowing:

• task-specific SU Language Models (SULMs)
• task-specific PFMs
• a lattice-based 1-Best Viterbi decoding framework

Fourgram (fg) word-based SULMs, and class-based trigram SULMs
with 40 classes (cl40-tg), were constructed. The ctsrt04 data was
converted into standard language model training texts, and unique
tokens for the SU subtypes were inserted after those lexemes that
preceded the SU boundaries. SU tokens were only inserted in the
boundary locations, and no special tokens were inserted after lex-
emes that did not constitute an SU boundary [11]. The word-based
SULMs were constructed using Kneser-Ney discounting as imple-
mented in the SRI LM Toolkit [10], while the class-based SULMs
were built using the HTK LM Tools [14]. The class-based N-gram
SULMs were estimated, and the class-based models were trained
using 4 iterations of Cluster [4] [12]. In all the experiments de-
scribed in this paper an interpolated fg and cl40-tg was used, and
these SULMs were interpolated with weights of 0.6 and 0.4 re-
spectively. The free-standing PFMs were constructed using the
ctsrt04 data as discussed in detail in section 4.

The SULMs were combined with the PFMs in a lattice-based
1-Best Viterbi decoding framework with empirically determined
grammar scale factors (gsf). The probabilities obtained from the
PFMs for each token in the test sets were divided by their priors,
and the resulting likelihoods were placed on the arcs of the initial
lattices which were then expanded using the SULMs and standard
HTK lattice tools [14]. The 1-Best decoder output produced token
sequences for each file in the test sets, and these contained the ASR
lexeme token sequence and SU boundary tokens that had been in-
serted automatically during the decoding process. The output files
were scored using the NIST produced tool md-eval-v19a.pl [7].

The primary scoring metric for the SUBD task simply sums
the number of SU boundary insertion, deletion, and substitution
errors in a given system output file, when compared to the cor-
responding reference file, and divides this sum by the number of
SUs boundaries in the reference file in order to produce an SU Er-
ror (SUErr) score. In this way, the SUErr metric is similar to the
familiar WER metric. Full information about the SUBD task and
the scoring metric used for RT-04 can be found in [6].

4. DECISION TREE PROSODIC FEATURE MODELS

The CDT-PFMs that provided the baseline for the experiments dis-
cussed in this paper were created as follows. Forced alignments
were obtained for the ctsrt04 data, and the segmented files were
aligned using non-VTLN HLDA MPE triphone models [12]. The
alignments provided word sequences and word-level start and end
times. Using this timing information, a set of prosodic features
was extracted for each lexeme token in the ctsrt04 data. The 10
prosodic features used are given in Table 3.

The prosodic features were extracted either from the wave-
form data or from corresponding plp encoded data files using ESPS
tools (e.g., get f0) and CUED-internal tools as described in [12].
The features were extracted from 0.2 sec window at the end of

Prosodic Feature Description
pause abs pause length after word
durabs abs duration of word

avg f0 L mean of good F0 values in left window
avg f0 R mean of good F0 values in right window

avg f0 ratio avg f0 L / avg f0 R
cnt f0 L number of good F0s in left window
cnt f0 R number of good F0s in right window
eng L RMS energy in left window
eng R RMS energy in right window

eng ratio eng L / eng R

Table 3. Prosodic Features: ‘good’ F0s values are those that fall
between 50Hz and 400Hz. The five f0 features and the three eng
features will be referred to as the f0x5 and engx3 features respec-
tively.

each word, and the feature vectors obtained were used in order to
construct the CDT-PFMs.

5. RESULTS FOR CDT-PFM SYSTEMS

CDT-PFMs, built using the ctsrt04 ds data, were combined dur-
ing the decoding stage with an interpolated fg and cl40-tg SULM
with gsf=1.0. SUErr results for various combinations of prosodic
features are given in Table 4.

SYSTEM dev03f eval03s dev04f eval04f
SULM 63.4 61.7 60.6 62.8
+ pause 58.0 57.2 56.1 57.5
+ durabs 56.9 56.1 54.5 56.4
+ f0x5 57.2 56.3 54.9 56.3
+ engx3 57.0 56.1 54.6 56.5

Table 4. CDT-PFM SUErr results for the dev03f, eval03s, dev04f,
and eval04f test sets using the ctsrt04 ds data.

Table 4 indicates that the CDT-PFM system that uses only the
pause and durabs features performs consistently well across all the
test sets.1 Results for CDT-PFMs that model pause and durabs
features using the ctsrt04 ds and ctsrt04 data respectively are given
in Table 5.

SYSTEM dev03f eval03s dev04f eval04f
SULM 63.4 61.7 60.6 62.8
CDT-PFM (ctsrt04) 58.4 56.9 56.8 58.6
CDT-PFM (ctsrt04 ds) 56.9 56.1 54.5 56.4

Table 5. CDT-PFM SUErr results for the dev03f, eval03s, dev04f,
and eval04f test sets using the ctsrt04 ds and ctsrt04 training data.

Clearly, the performance of the CDT-PFMs system degrades
across all test sets when all the ctsrt04 training data is used. This

1Various other feature combinations were explored, but the best results
across the four test sets were obtained using only the pause and durabs
features.
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is due to the fact that the non-SU tokens dominate the training data
and therefore increase the number of DEL errors. To compensate
for this, researchers use various techniques, such as ensembles of
‘bagged’ features, in order to side-step this fundamental modelling
problem [9] [13].

6. DISCRIMINATIVELY TRAINED GMM
PROSODIC FEATURE MODELS

As indicated in Section 5, CDT-PFMs have inherent weaknesses as
models for the SUBD task. Consequently, it is desirable to explore
alternative modelling strategies, and MMI-GMMs are introduced
here for this purpose. Although discriminative training techniques
have been used with considerable success in large vocabulary ASR
systems in recent years [15], they have not standardly been em-
ployed in sentence boundary detection systems.

Since the pause and durabs features gave the best performance
when the CDT-PFM system was explored, the same features were
used when the MMI-GMMs were built, though natural logs of
these features were used in order to ensure that the distributions
were roughly ‘Gaussian’. The ctsrt04 prosodic features for each
SU subtype were grouped together, and GMMs were built for each
subtype using 4 iterations of Maximum Likelihood (ML) training,
creating a set of ML-GMMs.

The ML-GMMs were then further trained using 8 iterations
of Maximum Mutual Information (MMI) training, with the LM
scale factor in the lattices set to 1. If O1,O2, ...,OR is a training
observation sequence for an SU subtype, and if the corresponding
transcriptions are {sr}, then the MMI objective function for the
GMM parameter set λ is as follows:

FMMI(λ) =
RX

r=1

log
pλ (Or|Msr

) P (sr)P
s
pλ (Or|Ms) P (s)

(1)

where Ms is the composite model that corresponds to the SU
token sequence s and P (s) is the (prior) unigram probability of
s. The summation of the denominator is taken over all possible
SU token sequences. Therefore, as usual, the MMI function max-
imises the posterior probability of the correct SU token sequence.
The MMI training framework was implemented using lattices. The
numerator lattices simply consisted of sequences of the relevant
SU subtype token (i.e., statement, question, incomplete, backchan-
nel, or non-SU), while the denominator lattices contained all pos-
sible SU subtypes sequences.2 In both the numerator and denomi-
nator lattices, the SU subtype priors were placed on the arcs. The
probabilities produced by the ML-GMMs and MMI-GMMs were
used in the decoding framework described in Section 3. The best
gsf was determined empirically, and therefore gsf=1.5 for all the
GMM experiments.

7. RESULTS FOR ML-GMMS AND MMI-GMM SYSTEMS

ML-GMM and MMI-GMM systems were constructed using both
the ctsrt04 ds and ctsrt04 training data, and different numbers of
mixtures were explored. Results for the ctsrt04 ds systems are
given in Table 6

Table 6 indicates that no single MMI-GMM system gives con-
sistent improvements over the CDT-PFM baseline across all test

2This implementation is similar to the ASR Frame Discrimination train-
ing scheme [8].

SYSTEM dev03f eval03s dev04f eval04f
SULM 63.4 61.7 60.6 62.8
CDT-PFM 56.9 56.1 54.5 56.4
ML-GMM (2m) 57.7 56.5 55.9 57.1
ML-GMM (4m) 57.8 56.3 55.8 57.1
ML-GMM (8m) 57.4 56.0 55.7 57.5
ML-GMM (16m) 57.7 56.1 55.3 57.3
MMI-GMM (2m) 57.2 55.2 55.2 56.5
MMI-GMM (4m) 57.0 55.6 55.4 56.8
MMI-GMM (8m) 57.6 56.2 55.1 56.9
MMI-GMM (16m) 57.5 56.4 55.2 56.8

Table 6. SUErr results for the ctsrt04 ds CDT-PFM, ML-GMM,
and MMI-GMM systems for the dev03f, eval03s, dev04f, and
eval04f test sets. Nm = N mixture components. The GMM sys-
tems used gsf=1.5, while the CDT-PFM system used gsf=1.0.

sets, though gains of up to 0.9% abs can be obtained using MMI-
GMMs. Results for the ctsrt04 and ctsrt04 ds MMI-GMM systems
are given in Table 7

SYSTEM dev03f eval03s dev04f eval04f
SULM 63.4 61.7 60.6 62.8
MMI-GMM (ctsrt04) 57.3 55.9 55.0 56.8
MMI-GMM (ctsrt04 ds) 57.0 55.6 55.4 56.8

Table 7. SUErr results for the ctsrt04 ds and ctsrt04 MMI-GMM
systems for the dev03f, eval03s, dev04f, and eval04f test sets. The
MMI-GMM systems all use 4 mixture components and gsf=1.5.

When the results in Table 7 are juxtaposed with those in Table
5, it is clear that, unlike the CDT-PFMs, the MMI-GMMs do not
require the ctsrt04 data to be downsampled. To consider the differ-
ence between these systems in more detail, DEL, INS, and SUB
errors for the eval04f test set are given in Table 8.

SYSTEM DEL INS SUB ERR
CDT-PFM (ctsrt04) 36.1 10.8 11.7 58.6
CDT-PFM (ctsrt04 ds) 30.5 14.1 11.8 56.4
MMI-GMM (ctsrt04) 27.4 17.8 11.6 56.8
MMI-GMM (ctsrt04 ds) 26.8 18.3 11.7 56.8

Table 8. SUErr results for the ctsrt04 ds and ctsrt04 CDT-PFM
and MMI-GMM systems for the eval04f test set. The MMI-GMM
systems all use 4 mixtures and gsf=1.5, while the CDT-PFM sys-
tems have gsf=1.0.

Table 8 indicates that the DEL and INS errors for the ctsrt04
and ctsrt04 ds MMI-GMMs differ by 0.6% abs and 0.5% abs re-
spectively, while the DEL and INS errors for the ctsrt04 and ct-
srt04 ds CDT-PFMs differ by 5.6% abs and 3.3% abs respectively.
The SUErr patterns indicate that the CDT-PFMs undergenerate
when they are trained using all the ctsrt04 data.
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8. SYSTEM COMBINATION

Since the CDT-PFMs and the MMI-GMMs model the training data
in very different ways, the probability streams obtained from both
modelling strategies can be combined. The easiest way to accom-
plish this is simply to produce a weighted average of each CDT-
PFM and MMI-GMM probability pair for each SU subtype associ-
ated with each token in the test data sets. The C1 system combines
the probabilities obtained from the ctsrt04 ds CDT-PFM and the
ctsrt04 MMI-GMM systems, while the C2 system combines the
probabilities obtained from the ctsrt04 ds CDT-PFM and the ct-
srt04 ds MMI-GMM systems. Various weighting strategies were
explored, and it was found empirically that the optimal weight-
ings were 0.5 and 0.5 respectively for the MMI-GMM and CDT-
PFM probabilities in the C1 system, and 0.4 and 0.6 respectively
for the MMI-GMM and CDT-PFM probabilities in the C2 system.
The system combination results using these weightings are given
in Table 9.

SYSTEM dev03f eval03s dev04f eval04f
CDT-PFM (ctsrt04 ds) 56.9 56.1 54.5 56.4
C1 56.8 55.3 54.4 55.9
C2 56.8 55.4 54.3 55.6

Table 9. SUErr results for the baseline ctsrt04 ds CDT-PFM sys-
tem and the C1 and C2 systems for the dev03f, eval03s, dev04f,
and eval04f test sets. The C1 and C2 systems use weighted MMI-
GMM probability streams that were produced by the 4 mixture
MMI-GMMs. The CDT-PFM system used gsf=1.0, while the C1
and C2 systems used gsf=1.2.

Table 9 indicates that the SUErr rates for the C1 and C2 sys-
tems are lower than those obtained using any of the systems indi-
vidually, with the SUErr gains over the CDT-PFM baseline ranging
from 0.1% to 0.8% abs.

9. CONCLUSIONS

This paper has demonstrated that discriminatively trained GMMs
can be used as PFMs in the CTS SUBD task. It has been shown
that MMI-GMMs that are trained using either the ctsrt04 or ct-
srt04 ds training data sets achieve SUErr rates across four test sets
that are comparable to the SUErr rates produced by a system that
uses a CDT-PFM trained on the ctsrt04 ds data. In addition, it has
been shown that simple system combination strategy which uses
a weighted average of the CDT-PFM and MMI-GMM probabil-
ity streams can achieve SUErr rates that are up to 0.8% abs lower
than those produced by the baseline ctsrt04 ds CDT-PFM system.
Since MMI-GMMs have not been standardly used as PFMs in the
past, there are many aspects of this modelling framework that have
yet to be explored in this context. For instance, the various dis-
criminative training techniques that are conventionally employed
in ASR tasks, as well as different sorts of prosodic features, can
all be exploited in the GMM modelling framework. Also, the sys-
tem combination results presented here suggest that contrasting
modelling approaches can be combined in order to improve the
performance of state-of-the-art SUBD systems.
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