
NOVEL FEATURE EXTRACTION FOR NOISE ROBUST ASR 
USING THE AURORA 2 DATABASE

Penny Hix, Stephen Zahorian, Fansheng Meng 
phix@odu.edu, szahoria@odu.edu, fmeng@odu.edu  

Department of Electrical Engineering 
Old Dominion University, Virginia, U.S.A.

ABSTRACT 

This paper presents speech signal modeling 
techniques that are well suited to robust recognition of 
connected digits in noisy environments. After several 
preprocessing steps speech is represented by a block-
encoding of discrete cosine transform of its spectra.  In 
this paper we combine linear predictive coding (LPC), 
morphological filtering, and long block lengths to achieve 
robust features for improved recognition in noisy 
environments.  The spectral envelope is first estimated by 
LPC.  Subsequent morphological filtering enhances the 
peaks while smoothing the valleys, which are more 
affected by noise in the signal.  These techniques were 
tested with the Aurora 2 database and the standard HMM 
recognizer as defined by the ETSI STQ-AURORA DSR 
Working group for WI007. With no major increase in 
computational demand a 23% word error rate (WER) 
reduction has been achieved as compared to the WI007 
baseline MFCC front-end for multi-condition training 
condition.  The basic conclusion is that the features 
resulting from the methods presented here perform better 
than cepstral features for ASR of noisy speech. 

1. INTRODUCTION 

 Although very high levels of accuracy have been 
achieved on clean speech, recognition accuracy of ASR 
systems is seriously degraded when the acoustic 
conditions are noisy and/or training and testing 
environments are mismatched.  Numerous speech research 
groups are currently studying various methods to 
surmount this problem.  In order to evaluate and compare 
the performance of proposed noise robust algorithms, the 
Aurora 2.0 database was designed [1].  The database was 
created by first down sampling the TI-digits database from 
20 kHz to 8 kHz.  In order to simulate realistic 
telecommunications terminal and equipment 
characteristics the database was then filtered with the 
G.712 and MIRS filters, as defined by the International 
Telecommunications Union (ITU).  Eight (8) different 
real-world noises types were artificially added to the 
filtered signals.   
         The ETSI STQ-AURORA DSR Working group 
standardized the WI007 front-end.  12 Mel frequency 
cepstral coefficients (MFCCs) are computed using a 25ms 
frame length with a frame rate of 10ms.  The frame level 

log energy and C0 term are also computed as additional 
acoustic features, resulting in a 14-component vector 
containing static features.  Additional details of the WI007 
front-end are provided in [1].  Front-end feature extraction 
evaluation is performed by the standard HMM recognition 
system, also defined by the Aurora working group. 

Feature extraction based on the encoding of 
global spectral shape has been adopted by the Old 
Dominion University Speech Communication Lab [2-5]. 
Our method differs from standard MFCC analysis in that 
the DCT is applied directly to the log-scaled spectrum. 
The resulting features are called DCTCs (Discrete Cosine 
Transform Coefficients). A DCT modified by a bilinear 
warping function is used to mimic the non-linear speech 
perception of the human ear [4].  Spectral/temporal 
features are computed by the Discrete Cosine Series 
Expansion of the DCTCs. The resulting parameters are 
called DCSCs (Discrete Cosine Series Coefficients).  This 
technique applies the DCT over a block or stack of frame 
features.  In this work we preprocess the speech signal 
using linear predictive (LP) coding with morphological 
filtering (MF) combined with long block lengths.  This 
spectrum is then log-scaled and our standard feature 
extraction is applied to the log-scaled LP-MF spectrum.   
          A commonly accepted approach to achieving 
robustness is acoustic feature compensation and 
normalization by cepstrum subtraction and cepstrum mean 
subtraction.  Using these methods a word error rate 
(WER) reduction of 13% has been achieved [6].  On the 
multi-condition data, over SNR 20 through SNR 0, Macho 
and Cheng achieved an average WER reduction of 
29.90% via SNR-dependent waveform processing [7].  
More recently Tsai and Lee achieved an average WER 
reduction of 9.15%, over all SNR levels, using 
progressive histogram equalization [8].   

2. SPECTRAL ENVELOPE ESTIMATION USING 
LINEAR PREDICTIVE CODING 

 Linear Predictive coding analyzes the speech signal using 
an auto-regressive time-domain model or all-pole spectral 
model.  The linear predictive model has been found to be 
effective for modeling formants corresponding to 
resonances of the vocal tract, which carry much speech 
information.    The perceptual relevance of LP, combined 
with computational efficiency, have made LP analysis 
very effective for low bit-rate speech coding [10], and also 
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as an intermediate step for computing speech features for 
ASR (RASTA-PLP,  Hermanksy).   Linear prediction can 
also be used to create an LP inverse filter, which removes 
the formant information and creates a flat spectrum signal 
(residual) useful for pitch tracking.   The transfer function 
for linear prediction analysis is given by: 
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where the ai are linear prediction coefficients, with 10 =a .  
When the LP order is suitably chosen the magnitude 
frequency response estimates the envelope of the signal 
spectrum.  The all pole nature of linear predictive coding 
produces a spectral envelope with sharp peaks. The 
accuracy of the spectral envelope will be highly affected 
by the type of signal analyzed. 

3. MORPHOLOGICAL FILTERING 

 In this work we use morphological filtering to broaden 
major harmonic peaks and suppress low-amplitude 
sections of the spectrum.  By selecting harmonic peaks 
and ignoring low level components, which are adversely 
affected by noise, morphological filtering can be used to 
reduce noise in the spectrum.   
          Dilation is a morphological operation that allows 
objects to expand, thus potentially filling in small holes 
and connecting disjoint objects. Erosion, a second 
principle of morphological operation, shrinks objects by 
eroding their boundaries. A structuring element 
determines exactly how the objects will be dilated or 
eroded [9].  In our processing, dilation was used to 
emphasize and broaden harmonic peaks and to eliminate 
sharp dips in the spectrum. 

4. ALGORITHM DEVELOPMENT 

For each spectral frame, X(f) , a spectral representation is 

obtained using the transfer function for linear prediction 
given in equation 2.1.  Due to its all-pole nature sharp 
peaks are a consequence of LPC processing.  In order to 
select the harmonic peaks morphological filtering is 
applied to the peaky spectral LPC output spectrum.  
Figure 4.1 illustrates these steps, depicting the log 
magnitude spectrum, the spectrum computed from LP 
coefficients, and the spectrum after morphological 
filtering.  The LP analysis is of order 75 and a 
morphological filter window width of 250 Hz have been 
chosen based on values that result in the highest 
recognition accouracy in experiments with Aurora 2.0, as 
described in section 5.  The peak-based spectral 
smoothing, which we refer to as LP_MF, is illustrated in 

Figure 4.1, for a single frame of speech.  Our standard 
feature extraction method is applied to the resulting LP-
MF spectrum.   

Figure 4.1 spectral processing, showing FFT,  LP, LP_MF spectra.  

Acoustic features for encoding the speech spectrum are 
computed as follows: 
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DCTC(i) is the ith feature as computed from a single 
spectral frame, X(f) .  Let
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Then we can rewrite equation 4.1 as
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The terms computed with equation 4.3 are equivalent to 
cepstral coefficients.  DCTC parameters are computed 
using a bilinear warping (g in Eqs. 4.1 and 4.2),
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In order to encode the trajectory of the short-time spectra 
DCSC features are computed.  The coefficients of the 
modified cosine expansion over the segment interval
represent the trajectory of the DCTCs.  This expansion 
allows non-uniform time resolution as follows.  Spectral 
feature trajectories are encoded by the cosine transform 
over time using:

.td )tjcos( )t(i,C DCT = j)DCSC(i,
1

o

′′′′∫ π  (4.5) 

The DCSC(i,j) terms represent both spectral and temporal 
information over a speech segment.  As with DCTCs we 
can re-express equation 4.5 as follows:  
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Letting
dt

dh
jh(t)]cos[ = (t)j πθ , h(t) a Kaiser window, 

dt (t) t)DCTC(i, = j)DCSC(i, j

1

o

θ∫    (4.7)

Thus, feature trajectories are represented using the static 
feature values for each frame, but with varying resolution 
over a segment consisting of several frames.      

5. EXPERIMENTAL RESULTS 

All experiments were performed with the HTK toolkit for 
implementing an HMM configured using the reference 
parameters provided in [1].  The models are simple left-to-
right, no skip, whole word models with 16 states per word 
(18 states in HTK notation).  There are 3 Gaussian 
mixtures per state with a diagonal covariance matrix.  
Two (2) pause models are defined. “Sil” models 
consisting of 3 states with 6 Gaussian mixtures per state 
model the pause before and after each utterance.   “Sp” 
models pauses between words.  It consists of a single state 
which is tied with the middle state of the “sil” model. 

For all experiments reported here analysis was 
performed using 30 ms frames, with a 10 ms frame 
spacing, and a frequency range of 0 to 3990 Hz.    For 
each frame, 13 DCTCs were computed, and then encoded 
with a 3 term DCS expansion over several frames (a 
block).    Overall, the highest accuracy was obtained using 
a 75th order LP model for each spectral frame, a 250 Hz  
window width for morphological filtering, and 11 frames 
per block (i.e., approximately 110 ms block). However, in 
this section, three sets of experiments are reported, to 
illustrate the effects of varying the number of frames per 
block, the LP order with no morphological filtering, and 
varying the LP order with morphological filtering. 

Experiment 1:   Effects of LP order 

In this experiment we study the effects of linear prediction 
with no morphological filter.   The number of frames per 
block was fixed to 11, and the linear predictive filter order 
was varied.  Training was performed on Aurora 2.0 multi-
condition data, and testing with test sets A, B, and C of 
the same database.  Table 1 gives results for linear 
predictive orders of 0, 15, 25, 50, 75, and 100 coefficients. 
Note that for the case of LP order zero, linear prediction 
was not used.    

Results of experiment 1:    
Table 1:  Word Accuracy for varying LP orders with no 

morphological filtering 
                Test Set   
LP order 

A B C Average 

0 83.98 79.52 72.87 79.97 
15 89.57 85.52 85.40 87.12 
25 89.04 84.51 85.02 86.42 
50 85.55 81.58 77.67 82.38 
75 84.97 80.07 73.35 80.69 

100 85.02 80.07 73.45 80.73 

Conclusion of experiment 1:  The results show that with 
15 terms LP based DCTC and DCSC features are slightly 
more noise robust than those produced by the baseline 
(WI007). 

Experiment 2: In this experiment we used 11 frames 
per block, and varied the order of the linear prediction.  
This experiment differs from experiment one in that we 
now included morphological filtering with a window 
width of 250 Hz.  Training was again performed on 
Aurora 2.0 multi-condition data, and testing with test sets 
A, B, and C of the same database.  

Results of experiment 2:   

Table 2:  Word Accuracy for varying LP orders with morphological 
filtering window width of 250 Hz 

       Test set 
LP order 

A B C Average 

0 90.68 87.14 88.71 88.87 
15 89.17 85.46 85.14 86.88 
25 89.93 85.92 87.44 87.83 
50 90.59 86.57 88.30 88.52 
75 90.82 87.73 89.04 89.23 

100 90.56 86.69 89.16 88.73 

Conclusion of experiment 2:  A 23% WER reduction 
was achieved with LP_MF features as compared to those 
obtained with baseline WI007. All results with 
morphological filtering are superior to those without 
morphological filtering, except for an LP order of 15, an 
order closer to that more typically used. 

Experiment 3:    In this experiment a 75th order LPC 
model and a morphological window width of 250 Hz were 
used.  The block length was varied from 3 frames to 19 
frames in steps of 2 (or approximately 30 ms to 190 ms, in 
steps of 20 ms).    Training was performed on Aurora 2.0 
multi-condition data, and testing with test sets A, B, and C 
of the same database.   

Results of experiment 3:  

Table 3:  Word Accuracy as a function of block length 
        Test Set 
Block 
Length 

A B C Average 

3 86.98 81.92 81.30 86.34 
5 88.95 84.53 84.74 83.82 
7 90.38 85.83 87.43 87.97 
9 90.45 86.23 88.44 88.45 

11 90.82 87.73 89.04 89.23 
13 90.04 86.72 89.08 88.52 
15 88.30 85.02 86.60 86.65 
17 87.84 84.61 86.00 86.18 
19 87.05 83.59 84.75 85.21 
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Conclusion of experiment 3:  LP_MF features computed 
with block length of 11 resulted in the highest overall 
accuracy.  The word error rate is 18.4% lower than results 
obtained with a block length of 3 frames, and 33.4% lower 
than results obtained with a block length of 5.   Block 
lengths longer than 13 frames (130 ms) result in degraded 
performance.  

Conclusions and future work:  We have presented a 
novel combination of front end signal processing 
consisting of linear prediction with morphological 
filtering for spectral envelope smoothing, followed by 
discrete cosine analysis in frequency to compute spectral 
features, followed by a second discrete cosine transform 
of spectral features over time to encode trajectory 
information.  The combinations of LP_MF DCTC 
features, and the dynamic features computed from them 
with a long time window, produce a 23% WER reduction 
on the Aurora 2.0 multi-condition training data.    The 
biggest differences between the processing reported in this 
paper, and more typical processing, are the use of a  much 
higher LP order (75th order versus more typical order of 
15),  use of morphological filtering, and use of much 
longer block lengths (11 frames per block versus more 
typical use of 3 or 5 frames per block).   The original 
motivation for using morphological dilation was to 
remove the low energy (and presumably noisy) spectral 
intervals between F0 harmonics in the original spectrum.  
It is unclear as to why the very high order LP model 
combined with morphological filtering (which smoothes 
the spectrum) results in noise robust features. 

Table 4 gives a comparison of our results with 
the original WI007 front-end, the updated version of 
WI007, and results produced by Evans & Mason using 
QBNL and NLSS based features.  Using the original, less 
robust, recognizer our features performed quite reasonably 
when compared to results produced by the updated 
recognizer.  We are currently testing our features on the 
Aurora 3.0 front-end and will be using the updated version 
of the HMM recognizer defined by the WI007 update.  In 
addition, we will begin testing a new feature set defined 
by morphological filtering followed by linear prediction 
(MF-LP features) because the peak selection property of 
morphological filtering along with the peak sharpening 
property of linear prediction should further enhance 
robustness in noisy conditions. 

  
Table 4:  Comparison of results

Test Set A B C Average 
WI007 baseline 87.81 86.27 83.77 85.95 
Evans & Mason 
QBNL&NLSS 

90.00 88.58 88.05 88.60 

LP_MF 90.82 87.73 89.04 89.23 
WI007 update (20 
Gaussian mixtures) 

92.5 90.47 90.75 90.26 
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