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ABSTRACT

A new front-end normalization algorithm that uses a parametric non-

linear transformation is proposed in this paper. The method im-

proves histogram equalization based nonlinear transformations by

finding a simple and computationally inexpensive parametric expres-

sion of the nonlinear transformation. The new parametric approach

relies on a two Gaussian model for the probability distribution of

the features, and on a simple Gaussian classifier to label the input

frames as belonging to the speech or non-speech classes. The re-

sult is a more robust equalization, less dependent on the percentage

of speech and non-speech frames. Recognition experiments on the

AURORA 4 database have been performed and the effectiveness of

the algorithm is analyzed in comparison with other linear and non-

linear feature equalization techniques.

1. INTRODUCTION

On the framework of Robust Speech Recognition, Histogram Equal-

ization (HEQ) based feature transformations have been successfully

applied [1, 2, 3, 4] to deal with the nonlinear effect of the acoustic

environment in the feature domain. These techniques differ in the

domain where the normalization is performed [3, 5] and in the way

the probability distributions are modeled [6, 7].

The main goal of this approach is to normalize the probability

distributions of the features in such a way that the acoustic environ-

ment effects are (partially) removed. HEQ based transformations

can be seen as an extension of linear transformation techniques like

cepstral mean subtraction (CMS) and cepstral mean and variance

normalization [8] that only deal with the normalization of the two

first moments of the probability distributions of the features.

Although HEQ based techniques have been proved to signifi-

cantly improve the robustness of speech recognition systems against

acoustic environment degradations [9, 10, 11], they suffer from sev-

eral limitations. In most cases, HEQ based techniques rely on a local

estimation of the probability distributions of the features based on a

reduced number of observations belonging to a single utterance to

be equalized. Using histograms leads to rather noisy estimations of

the cumulative distribution functions (CDF). To overcome this draw-

back, sampling quantiles [6, 7] have been proposed as an alternative

to characterize the CDF of the features. In this approach, the trans-

formation function is defined as a piecewise linear mapping between

estimated quantiles and a set of quantiles describing the reference

CDF.

A second drawback of HEQ based techniques is that the non-

linear transformation is based on mapping the global CDF of each

feature into a reference one. When the estimation of the CDF is

built using a reduced number of observations from a single utterance,

variations in the amount of non-speech frames in the utterance intro-

duce unwanted variability in the estimated CDF [12] and therefore in

the corresponding transformation function that may degrade the per-

formance of the technique. This problem can be alleviated using a

voice activity detector (VAD) to drop non-speech frames prior to the

equalization [10]. Finally, HEQ transformations are usually based on

a component-by-component equalization of the feature vector, thus

discarding any cross-information between features in the equaliza-

tion process.

To overcome these limitations, we propose here a parametric

nonlinear equalization technique that is based on a simple two-class

Gaussian mixture model of the feature probability distributions. The

main advantage of the proposed approach is that using parametric

models with little free parameters allows smoother estimations of

the probability distributions, and can also take into account both

the cross-feature correlations and the variable amount of non-speech

frames in each utterance. Experiments on AURORA4 database have

shown the benefits of this new approach in comparison with the usual

non-parametric component-by-component approaches to HEQ.

The rest of the paper is organized as follows. In section 2, the

traditional HEQ approach is briefly revised and the new approach is

presented. Section 3 shows comparative results on the AURORA4

task and finally, the conclusions of this work are presented in section

4 along with future work.

2. PARAMETRIC EQUALIZATION

2.1. Histogram-based and quantile-based equalization

HEQ techniques use the following property of the random variables:

For a given random variable y with probability density function py(y),

a function x = F (y) mapping py(y) into a reference distribution

px(x) can be obtained by equating the CDF of x and y:

Cy(y) = Cx(x) = Cx(F (y)) (1)

x = F (y) = C−1
x (Cy(y)) (2)

where C−1
x denotes the inverse of the reference CDF. The function

F (y) is monotonic non-decreasing and nonlinear in the general case.

Under the assumption of statistical independence, HEQ is applied to

each cepstral coefficient independently. For each input sentence, the

CDF of each coefficient Cy(y) is approximated by its cumulative

histogram. Next, the bin centers of this histogram are transformed

according to (2) and finally, the transformed features are obtained by

linear interpolation between these values.

Instead of using histograms, the transformation can also be de-

fined as a piecewise mapping between a predefined set of quantiles

of the reference probability distribution and those estimated from

observations of a given utterance to be equalized [6, 9, 7]. From a
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reference distribution, NQ quantiles Qx(pr) = C−1
x (pr) are com-

puted for probability values:

pr =

�
r − 0.5

NQ

�
∀r = 1, . . . , NQ (3)

The corresponding sampling quantiles Qy(pr) are estimated from

the order statistics [7]. As each pair of quantiles (Qy(pr), Qx(pr))
represents a point of the nonlinear transformation, the transformed

value of the central frame yt is obtained by linear interpolation be-

tween the tabulated points. Linear extrapolation is used whenever yt

is less than the first sampling quantile or greater than the last one.

2.2. Dependence on the silence content

As said before, the relative content of non-speech frames is a cause

of variability in the HEQ transformation. This is because an esti-

mation of the global probability distribution is used, that takes into

account both speech and non-speech frames. As an example, figure

1 shows this situation. Figure 1 (a) shows the temporal values of

the first cepstral coefficient of a typical utterance and figure 1 (b)

shows the same coefficient after part of the initial silence has been

removed. The estimated CDF’s for both utterances are depicted in

figure 1 (c). It is clearly shown that, although both utterances have

the same values for the speech-frames, the different amount of non-

speech frames alters the global CDF. This differences on the esti-

mated CDF’s induces an unwanted variability on the estimated trans-

formation, as illustrated in figure 1 (d).

The reason of this variability is evident if we express the CDF as

a mixture of two CDF’s corresponding to the speech and non-speech

frames:

Cx(x) = αCnx(x) + (1 − α)Csx(x) (4)

where α is the fraction of non-speech frames and Cnx(x) and Csx(x)
are the CDF’s of non-speech and speech frames respectively. Even

if the probability distributions of the features remain unaltered, dif-

ferent values of α result in different Cx(x) distributions.

2.3. Two-class parametric equalization

This unwanted variability of the transformation induced by the vari-

able proportion of non-speech frames of each utterance can be re-

duced by removing non-speech frames before the estimation of the

transformation. Another possibility is to use different transforma-

tions for speech and non-speech frames [12]. That is, instead of

using a transformation to map the global CDF’s of the features, we

can build separate mappings for speech and non-speech frames. Al-

though theoretically attractive, this approach can hardly be imple-

mented in a sentence-by-sentence equalization strategy because of

the lack of sufficient data to obtain an accurate enough estimation of

the required CDF’s.

As an alternative, we propose the use of a parametric form of the

equalization transform based on a two Gaussian mixture model. The

first Gaussian is used to represent non-speech frames, while the sec-

ond one represents speech frames. For each class, a parametric linear

transformation is defined to map the clean and noisy representation

spaces:

x̂ = µn,x + (y − µn,y)

�
Σn,x

Σn,y

�1/2

if y is non-speech (5)

x̂ = µs,x + (y − µs,y)

�
Σs,x

Σs,y

�1/2

if y is speech (6)
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Fig. 1. CDF dependence on the non-speech content of an utterance.

(a) First cepstral coefficient of a typical utterance. (b) The same

coefficient after partially removal of the initial non-speech frames.

(c) Estimated CDF’s for the cepstral coefficient in (a) (solid line) and

in (b) (dashed line). (d) Transformations obtained from the CDF’s

for the original coefficient (solid line) and after initial non-speech

frames removal (dashed line).

where µn,x, Σn,x, µs,x and Σs,x correspond to the Gaussians mod-

eling clean non-speech and speech frames, respectively, and µn,y ,

Σn,y , µs,y and Σs,y correspond to the Gaussians modeling noisy

non-speech and speech frames. With these definitions of the linear

transformations, the noisy means µn,y and µs,y are transformed into

the clean means µn,x and µs,x, and the noisy covariance matrices

Σn,y and Σs,y are transformed into the clean covariance matrices

Σn,x and Σs,x (for both, the non-speech and speech models). The

clean Gaussians for speech and non-speech frames can be estimated

from the training database, while the noisy Gaussians should be es-

timated from the utterance to be equalized.

In order to select whether the current frame y is speech or non-

speech, a voice activity detector could be used. However, this im-

plies a hard decision between both linear transformations that could

create discontinuities in the limit of the non-speech/speech decision.

Instead, a soft decision can be used:

x̂ = P (n|y)

�
µn,x + (y − µn,y)

�
Σn,x

Σn,y

�1/2
�

+P (s|y)

�
µs,x + (y − µs,y)

�
Σs,x

Σs,y

�1/2
�

(7)

by including the conditional probabilities of frame y being non-

speech or speech. The posterior probabilities P (n|y) and P (s|y)
are obtained using a simple two-class Gaussian classifier on the log-

energy term (the C0 cepstral coefficient). Initially, those frames with

C0 below the mean value are assigned to the non-speech class and

those with C0 above the mean are assigned to the speech class. The

EM algorithm is then iterated until convergence (usually, 10 itera-

tions are enough) to obtain the final classifier. This classifier is used

to obtain the class probabilities P (n|y) and P (s|y) and also to ob-

tain the mean and covariance matrices µn,y , Σn,y , µs,y and Σs,y

for the non-speech and speech classes for the given noisy input ut-

terance. Then, the input utterance can be equalized using equation
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Fig. 2. Two Gaussian model and histograms of two first cepstral

coefficients of clean (a) and (b) and noisy data (c) and (d).

(7). This equation leads to a non-linear interpolation of two class-

dependent linear transformations.

Figures 2 (a) and 2 (b) show the two Gaussian model for the C0

and C1 cepstral coefficients (used as reference model) along with the

histograms of the speech and non-speech frames for a set of clean

utterances. Figures 2 (c) and 2 (d) show the same data for a set of

noisy utterances.

Figure 3 represents the resulting transformation for a typical

noisy utterance according to the proposed parametric procedure. The

transformation provided by histogram equalization is also represented

for comparison. The transformations are represented for the C0 (top)

and C1 (bottom) cepstral coefficients. Since the parametric equal-

ization relies on the class probabilities P (n|y) and P (s|y), and they

depend on the level of the C0 cepstral coefficient, equation (7) pro-

viding x̂ as a function of y is a non-linear transformation which tends

to the linear mapping given by equation (6) when P (s|y) � P (n|y)
and to the linear mapping of equation (5) when P (n|y) � P (s|y).

In the case of C1 cepstral coefficient, since the probabilities P (n|y)
and P (s|y) depend on C0, the relationship between the noisy and

equalized values is not a monotonic function, and a value of noisy

C1 could provide different values of equalized C1, depending on the

value of C0 for this frame. This behavior is consistent with the prob-

ability distributions of C1 cepstral coefficient for non-speech and

speech frames in clean and noisy conditions, observed in figure 2 (b)

and 2 (d). In this case, a non-linear trend can also be observed, and

histogram equalization-based transformation tries to provide the best

non-linear monotonic function matching the parametric equalization

of the proposed method.

3. EXPERIMENTAL RESULTS

The proposed parametric equalization algorithm has been tested on

the AURORA4 (WSJ0) database, following the standard clean train-

ing test. All the procedures for recognition and training are identical

to the reference experiments with the exception of the front-end that

includes the normalization procedure described in this paper. The
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Fig. 3. Transformations provided by the proposed parametric equal-

ization technique (circles) along with the transformation provided

by histogram equalization (solid line) for the two first cepstral coef-

ficients C0 (top) and C1 (bottom) of a typical noisy utterance.

recognition system used in all cases is based on continuous cross-

word triphone models with 3 tied states and a mixture of 6 Gaussians

per state. Training and recognition are performed using the HMM

Tool Kit (HTK) software. The language model is the standard bi-

gram for the WSJ0 task. A feature vector of 13 cepstral coefficients

is used as the basic parameterization of the speech signal using C0

instead of the logarithmic energy. This basic feature vector is aug-

mented with first and second order regressions yielding a final 39

components feature vector. The baseline reference system (BASE)

uses sentence-by-sentence subtraction of the mean values of each

cepstral coefficient (CMS).

For the proposed parametric equalization technique (PEQ), the

parameters of the reference distribution have been obtained by aver-

aging over the whole clean training set of utterances. Both training

and test utterances have been then equalized to this reference distri-

bution using equation (7). Cepstral coefficients are equalized before

the computation of the regressions.

For comparison purposes, two additional experiments have been

conduced. The first one (HEQ) is similar to PEQ with the difference

that in this case, the cepstral coefficients are equalized using a quan-

tile based approach as described in section 2.1. For each cepstral

coefficient, 31 quantiles are estimated for each cepstral coefficient

and each utterance. The reference CDF of each cepstral coefficient

is obtained by averaging the quantiles of each of the clean training

data utterances. Training and test data are then equalized to this

reference distribution by estimating the quantiles of each input ut-

terance and using a piecewise linear transformation between these

values and the corresponding ones of the reference distribution. The

last experiment (AFE) uses the ETSI standard advanced front-end

parameterization algorithm [13].

Table 1 shows the obtained word error rates for the 14 test sets

of AURORA4. First row (BASE) corresponds to the baseline system
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Table 1. Word error rates for the 14 test of AURORA4 clean training experiment (8KHz / 166 small tests). Results for the baseline system

(BASE), histogram based equalization (HEQ), the proposed parametric equalization technique (PEQ) and the ETSI advanced front-end (AFE).

01 02 03 04 05 06 07 08 09 10 11 12 13 14 Avg

BASE 13,2 24,7 46,0 47,6 52,7 44,8 54,7 22,6 36,2 55,4 58,3 65,3 54,1 62,3 45,6

HEQ 11,2 23,2 37,7 38,3 37,5 37,7 39,7 20,9 33,4 46,0 49,8 52,2 45,9 51,0 37,5

PEQ 13,4 17,6 32,5 35,4 35,1 30,0 37,5 16,8 22,6 37,0 41,2 44,4 36,0 41,9 31,5

AFE 12,7 17,8 30,4 34,8 30,6 34,9 31,7 18,8 25,1 38,0 44,9 40,4 39,3 38,4 31,3

which is based on a simple CMS linear normalization technique. The

second row (HEQ) shows the word error rates when using a standard

quantile-based implementation of HEQ. A relative word error rate

reduction of 17.8% is obtained in this case. The performance of

HEQ is clearly improved by PEQ as shown in the third row, with a

relative word error reduction of 30.8%. This result is very close to

the one obtained for the AFE, which yields a 31.4% reduction of the

word error rate. Moreover, PEQ outperforms AFE in half of the tests

(i.e. 02, 06, 08, 09, 10, 11 and 13).

4. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a simple parametric feature transfor-

mation technique for nonlinear feature equalization and its applica-

tion for robust speech recognition.

The transformation is based on a nonlinear interpolation of two

independent linear transformations. The linear transformations are

obtained using a simple Gaussian model for the classes of speech

and non-speech features.

The technique has been evaluated on a complex continuous speech

recognition task showing its competitive performance against linear

and nonlinear feature equalization techniques like CMS and HEQ.

Moreover, the recognition accuracy is comparable to that obtained

with standard front-end algorithms like the ETSI advanced front-

end.

In the implementation presented in this paper, diagonal covari-

ance matrices have been assumed in the multivariate Gaussian model

for the features in each class. A study of influence of within class

cross-correlations is currently under development.
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