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Abstract

In this paper, we propose the cepstral statistics compensation 

(CSC) algorithm, which alleviates the effect of additive noise on 

the cepstral features for speech recognition. It is a simple but 

quite efficient noise reduction technique that makes use of 

online constructed pseudo stereo codebooks. The statistics, such 

as mean and variance, for the cepstral features in both clean and 

noisy environments are evaluated using pseudo stereo 

codebooks. Then a transform is obtained for the noise-corrupted 

cepstra so that the statistics of the transformed ones are close to 

those of clean cepstra. Experimental results show that CSC 

provided a 13% reduction in word error rate when compared to 

the results obtained using cepstral mean and variance 

normalization (CMVN), and a 34% reduction in error rate 

compared to baseline processing in the noise range of 0-20dB in 

experiments conducted on Aurora-2 Test Set A noisy digits 

database. In addition, we also provide some other noise 

robustness approaches based on pseudo stereo codebooks and 

show their effectiveness in noisy speech recognition.  

1. Introduction 

The performance of a speech recognition system is often 

severely degraded in the presence of noise. A variety of 

approaches have been proposed to alleviate the effect of additive 

noise. They can be roughly divided into three classes:  

utilization of a noise robust representation of speech signals, 

enhancement of the speech features before they are fed to the 

recognizer, and adaptation of the speech models in the 

recognizer in order to make them better match the noisy 

conditions, The main difference between the first two classes of 

approaches is that, for the first class, the noise robust speech 

features are used for both model training and testing, and for the 

second, enhancement procedures are often performed only on 

the testing noise corrupted speech, while keeping the speech 

features for training unchanged. In this paper, our proposed 

approaches belong to the second class. A new feature 

enhancement pre-processing scheme called cepstral statistics 

compensation (CSC) is introduced. 

The philosophy of the CSC approach can be summarized as 

follows. Due to the presence of noise, the statistics, for example, 

mean and variance, of the resulted noise corrupted speech 

features are quite different from those the original clean ones. If 

the statistics of both clean and noise-corrupted speech features 

can be obtained, or approximately estimated, then we are able to 

transform the noise corrupted speech features in order to make 

them similar to clean ones in their statistics.  

First, in order to efficiently obtain the statistics of clean speech 

features, we collect all clean speech features (in mel-spectral

domain) in the training database and create a “clean-speech” 

mel-spectral codebook of N codewords via vector quantization 

(VQ). These mel-spectral codewords are then transformed into 

cepstral domain. Viewing these cepstral codewords as samples, 

we can calculate their statistics, for example, the mean, variance 

or higher-order moments. We assume these obtained statistics 

are close to the exact ones of all clean speech features in the 

training database.  

Next, for the noisy testing environment, however, since a testing 

utterance is often short in length and the signal-to-noise ratio 

(SNR) is often time-varying from utterance to utterance, it is 

often difficult to obtain a set of reliable codewords with which 

the statistics for noise-corrupted speech are estimated. As a 

result, here we attempt to construct the “noise-corrupted speech” 

codebook with the help of the available “clean-speech” 

codebook. For a given testing noisy utterance, the noise-only 

part is first detected and then a noise vector in mel-spectral

domain is estimated, which approximates the noise level of this 

utterance. Then this noise vector is linearly added to every 

mel-spectral “clean-speech” codeword to form a set of 

mel-spectral “noise-corrupted speech” codewords. Similar to the 

procedures for clean speech, these mel-spectral codewords are 

transformed into cepstral domain. With these cepstral codewords, 

the approximated statistics of the noise-corrupted speech cepstra 

can be estimated. 

Finally, with the statistics for both conditions in hand, a 

transformation for the testing noise-corrupted speech cepstra can 

be obtained so that the new statistics of the transformed cepstra 

can be equal or close to those of clean cepstra. We believe that 

such a transformation is capable of reducing the mismatch 

between clean training and noisy testing conditions, and thus 

improve the robustness of the speech recognition system. The 

advantage of this CSC algorithm is that it is very simple since 

only the testing data is processed, while the training data and the 

recognition models remain unchanged. Also, because the noise 

information can be often extracted in the first few frames of an 

utterance, it can be on-line performed. Experimental results 

show that, with simple noise estimation, the proposed CSC 

algorithm can significantly improve the recognition accuracy of 

the original MFCC features under an additive noise environment. 

Moreover, it was also shown that CSC outperforms the widely 

used cepstra mean and variance normalization (CMVN) 

approach [1].  

Besides the above CSC algorithm, the two sets of codewords, 

which we call “pseudo stereo codebooks” afterwards, still have 

extensive applications. Several other noise robustness 

approaches based on them can be easily developed. For example, 

the codebook-based cepstral mean normalization (CMN) and 

CMVN approaches use the statistics obtained from these 

codebooks rather than from per utterance. In addition, in order to 

minimize the overall pair-wise square distances between the two 

sets of codewords, polynomial regressions, such as linear least 

square and quadratic least square regression, can be used as the 

transformations for the testing speech cepstra. Experimental 

results also reveal that these codebook-based approaches are 

very effective in reducing the effect of additive noise by 

increasing the recognition accuracy.  

This paper is organized as follows: In section 2, the construction 
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of pseudo stereo codebooks is stated and the proposed CSC 

algorithm is formally derived. Section 3 summarizes several 

other noise robustness approaches based on pseudo stereo 

codebooks. The experimental environment setup is described in 

section 4, and the recognition results are given and discussed in 

section 5. Section 6 compares the proposed algorithms with 

some other existing approaches. Finally, section 7 briefly 

presents conclusions and future works. 

2. Pseudo Stereo Codebooks and Cepstral Statistics 

Compensation 

Given the clean training database, we first convert each 

utterance into a sequence of mel-spectral vectors. All of these 

mel-spectral vectors are then used to construct a set of N

codewords, denoted as ,  1
m

m Nx , (the vectors in 

mel-spectral domain are indicated by the notation “~ ” here). 

These mel-spectral codewords can be transformed into cepstral 

domain as follows, 

log
m m
x C x ,                      (1) 

where C  is the DCT matrix.  

Under noisy testing conditions, let the estimated mel-spectrum 

of the noise be just approximated as a vector n  for simplicity. 

Then, since the clean speech and noise are roughly additive in 

mel-spectral domain, the noise-corrupted speech codewords 

,  1
m

m Ny  are obtained as  

m m
y x n .                           (2) 

Finally, we transform each 
m
y  into cepstral domain as in eq. 

(1),   

log
m m
y C y                         (3) 

From the above, the two set of codewords, 
m
x  and 

m
y can be viewed as the cepstral codebooks for the clean 

training and noisy testing conditions, respectively, and they are 

named “pseudo stereo codebooks” here. 

The pseudo sterero codebooks may help us obtain the 

approximate statistics for the cepstra of the clean and noise 

corrupted speech. For example,  

,
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where iv  denotes the i-th component of an arbitrary vector v,

,ix  and 
2
,ix  are the mean and variance of the i-th 

component of the clean speech cepstral vector x, respectively, 

and ,iy  and 
2
,iy  are the mean and variance of the i-th 

component of the noise corrupted speech cepstral vector y,

respectively. As a result, we can transform each noise corrupted 

cepstral vector y as  

, ,i i ii y xz y ,                    (5) 

or

,

, ,

,

i

i i ii

i

x

y x

y

z y ,              (6) 

The new cepstral coefficient iz  and the clean one ix  will 

have the same mean if eq. (5) is used, or they have the same 

mean and variance if eq. (6) is used. Since some of the statistics 

(mean, or mean and variance here) of the noise corrupted speech 

cepstra are compensated, they can be equal or close to those of 

clean ones, and thus eq. (5) and eq. (6) are called cepstral 

statistics compensation (CSC) algorithms.  

The concept of CSC is quite similar to that of the well-known 

cepstral smoothing techniques, cepstral mean normalization [2] 

(CMN) and cepstral mean and variance normalization (CMVN) 

[1], since all of them pursue the same statistics for the training 

and testing speech cepstra. However, there are two major 

differences between CSC and these two normalization 

approaches. First, in CSC, only testing speech cepstra are 

adjusted and training speech ones remain unchanged, while in 

CMN and CMVN both training and testing sets need to be 

normalized to have zero mean, or have both zero mean and unit 

variance. When the signal-to-noise ratio (SNR) is high or 

medium, the testing MFCC features will not be altered too much 

by CSC, and still keep their original discriminating capability. 

So we expect that CSC will outperform CMN and CMVN under 

moderate noisy conditions. Secondly, in CSC, the statistics of 

the noise corrupted cepstra were estimated by the online 

constructed codebook, while in CMN or CMVN, the statistics 

are often obtained with the whole frames of an utterance or a 

running window on them. Therefore, compared with CMN and 

CMVN, CSC is more likely to perform in a real-time manner as 

long as the noise estimate is also real-time. Furthermore, the 

accuracy of the estimated statistics in CSC relies on the accuracy 

of the noise estimate and the level of representation of the 

codebook, while in CMN and CMVN, it mainly depends on the 

selected frames to be averaged.  

3. The Other Noise Robustness Approaches Based on Pseudo 

Stereo Codebooks 

Besides the proposed CSC approach, there are still several other 

approaches that can be easily developed using pseudo stereo 

codebooks. We briefly introduce them in the following 

subsections. 

3.1 Codebook-based CMN and CMVN

As introduced in section 2, the widely used CMN or CMVN 

often uses the whole utterance frames or a running window on 

them to calculate the statistics. Here in codebook-based CMN 

and CMVN, the statistics are obtained from the pseudo stereo 

codebooks. Therefore, for codebook-based CMN, 

, ,  ,  i i iii i
x yx x y y ,             (7) 

and for codebook-based CMVN,  

, ,

, ,

  ,  
i i ii

i i

i i

x y

x y

x y
x y ,            (8) 

where x  and y  are the normalized version of training and 

testing cepstra, respectively, and the statistics ,ix , ,iy , ,ix

and ,iy  are obtained by eq. (4). Thus, ideally both 
i
x  and 

i

y  are zero-mean, or zero-mean and unit-variance.  

3.2 Polynomial Regression Approaches–Linear Least Square 

and Quadratic Least Square Regressions 

From section 2, it is observed that each noise corrupted speech 

codeword
m
y  corresponds to its clean version 

m
x , and the 

two sets 
m
x  and 

m
y  are assumed to represent all the 
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clean and noise corrupted speech cepstra x  and y ,

respectively. If we can find a transformation .  on each 

m
y  such that the overall distances, or its variations, between 

m
y  and 

m
x  are minimum, then it is reasonable to guess 

that, when the transformation .  is performed on an 

arbitrary noise corrupted speech cepstrum y , y  will be 

very close to it clean version x . For simplicity, the 

transformation considered here is component-wise, that is, it is 

performed on each dimension of 
m
y , and the objective function 

to be minimized is the overall squared distances: 

2

1

N

i i m mi i

m

J y x .                 (9) 

When the transformation function 
i
u  in eq. (9) is assumed 

to be a polynomial of the variable u , minimizing 
i
J  with 

respect to .
i

 becomes a classical least-square (LS) , or 

curve- fitting problem. That is, if  
1

1 0
n n

i n n
u a u a u a ,            (10) 

and the objective function 
i
J  in eq. (9) can be re-written as 

2

i
J Ya b ,                          (11) 

where

1

1 1

1

2 2

1

1

1

n n

i i

n n

i i

n n

N Ni i

y y

y y
Y

y y

,

1 0

T

n n
a a aa , and 

1

T

Ni i
b x x ,

then the coefficient vector a  of the polynomial that minimizes 

i
J  is just the least-square solution,  

1
ˆ T T
a Y Y Y b .                         (12) 

Practically, the order n of the polynomial .
i

 cannot be too 

large to prevent from the ill-conditioned matrix 
T
Y Y . When 

1n , the transformation .
i

 is a linear function, and is 

often called linear regression (LR) or linear least square 

regression. Similarly, when 2n , .
i

 is a quadratic 

function and is called quadratic least square (QLS) regression.  

In particular, for the linear regression case ( 1n ), with eq. 

(12) we obtain the transform function as  

,

, ,

,

i

i i ii i

i

x

y x

y

y y ,             (13) 

where

, , , ,
1

1 N

m i m i i ii i

mN
x y x yx y ,  (14) 

which is called the correlation coefficient. 

Comparing eq. (13) with eq. (6), we find LR and CSC are quite 

similar. The only difference is that LR considers the correlation 

between 
m
y  and 

m
x  while CSC simply assumes they are 

completely associated ( 1 ). Note that in fact 1

because 
m
y  is not a linear function of 

m
x , which can be 

shown by combining equations (1)-(3): 
1log exp

m m
y C C x n .                 (15) 

4. Experimental Setup 

The proposed codebook-based algorithms have been tested with 

the AURORA2 database. For the recognition experiments, two 

sets (Sets A and B) of utterances artificially contaminated by 

different types of noise (subway, babble, car, etc.) and different 

SNR levels (ranging from -5dB to 20dB) were prepared. Since 

the proposed algorithms only involve the front-end feature 

extraction, all the procedures for training and recognition are 

identical to the reference experiments stated in the AURORA2 

documentation [3]. 

For the clean training database, each of the 8440 strings was first 

converted into a stream of 23 mel-spectral coefficients plus 

log-energy. All of these 24-dimensional feature vectors were 

used to construct a set of N codewords via vector quantization 

(VQ). These codewords were also converted to 13-dimensional 

cepstral vectors (c0~c12 and log-energy) to form the clean 

speech cepstral codebook 
m
x . The size N of the codebook is 

set to give the best recognition performance. In addition, all of 

these 24-dimensional feature vectors in the training set were 

converted to cepstral domain. The obtained MFCC features plus 

their delta and delta-delta were the components in the finally 

used 39-dimensional feature vectors. With these feature vectors 

in the training database the hidden Markov models for each digit 

were trained.  

For the testing condition, we estimated the noise vector for each 

utterance by simply averaging its first 5 mel-spectral frames. 

That is, we assumed the first 5 frames (about 65 ms) of each 

utterance contain noise only. Then, following the procedures 

stated in section 2, we constructed the noise corrupted speech 

cepstral codebook 
m
y . Then based on the two codebooks 

m
x  and 

m
y , the various proposed algorithms were 

performed to adjust the testing features, respectively. 

5.  Experimental Results and Discussions 

Table 1 lists the recognition results of MFCC baseline and 

several robustness approaches, including utterance-based CMN 

(U-CMN) and CMVN (U-CMVN), codebook–based CMN 

(C-CMN) and CMVN (C-CMVN), linear regression (LR), 

quadratic least square (QLS) regression and two versions of 

CSC, where CSC-1 compensates only mean values as in eq. (5) 

and CSC-2 compensates both mean and variance values as in eq. 

(6). From this table, several phenomena can be observed: 

1. When the training and testing are in matched clean condition, 

all approaches give very similar high recognition accuracy, 

which means these robustness techniques do not reduce the 

discriminating capability of MFCC. 

2. For the conventional utterance-based CMN and CMVN, the 

performance improvements are obvious, and CMVN is 

especially better than CMN for the test A set under lower 

SNR conditions (0~10dB). However, for the test B set, their 

corresponding recognition rates are quite similar. 

3. Both of the two CSC approaches enhance the noise robustness 

of the original MFCC features significantly. For example, 

CSC-1 gives about 7% and 12% word accuracy improvements 

for sets A and B, respectively, and CSC-2 gives 13% and 17% 

for sets A and B, respectively. As a result, CSC-2 is obviously 

better than CSC-1, which implies further compensating the 

variance is very helpful. Furthermore, when compared with 

utterance-based CMN and CMVN, CSC-2 is apparently 

superior to CMVN for all noise conditions, while CSC-1 

outperforms CMN only for test set A. 
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Test System clean 20dB 15dB 10dB 5dB 0dB -5dB Average (0~20dB) 

Baseline 98.91 94.99 86.93 67.28 39.36 17.07 8.40 61.13

U-CMN 98.98 96.90 92.30 76.15 43.37 22.05 12.85 66.15

U-CMVN 98.98 95.98 91.66 80.48 57.40 26.40 10.96 70.38

CSC-1 98.94 96.79 92.69 79.20 50.90 21.60 10.55 68.24 

CSC-2 98.94 97.11 94.68 86.35 63.96 28.86 10.15 74.20

C-CMN 98.94 96.79 92.69 79.20 50.90 21.60 10.55 68.24 

C-CMVN 98.95 97.21 94.48 86.01 64.35 30.28 10.90 74.47 

LR 98.91 97.20 94.71 87.35 66.70 32.99 12.04 75.79 

Test 

Set A 

QLS 98.94 97.16 94.86 87.28 67.51 33.65 11.61 76.09 

Baseline 98.94 92.35 80.79 58.06 32.04 14.63 7.92 55.57

U-CMN 98.98 97.63 94.15 82.19 52.34 26.12 14.05 70.49 

U-CMVN 98.98 96.41 92.15 81.78 58.69 26.47 10.98 71.10 

CSC-1 98.94 96.61 91.73 77.19 50.82 22.87 10.19 67.84 

CSC-2 98.94 97.19 94.03 84.55 60.25 27.78 10.82 72.76

C-CMN 98.94 96.61 91.73 77.19 50.82 22.87 10.19 67.84 

C-CMVN 98.95 97.02 93.63 83.56 59.59 28.31 11.05 72.42 

LR 98.91 97.30 94.65 86.29 64.64 31.50 12.00 74.88 

Test 

Set B 

QLS 98.94 97.00 93.27 84.00 63.43 32.43 12.07 74.02 

Table 1. Recognition accuracy (%) for baseline and various approaches, utterance-based CMN (U-CMN), utterance-based CMVN 

(U-CMVN), mean compensated CSC (CSC-1), mean-and-variance compensated CSC (CSC-2), codebook-based CMN (C-CMN), 

codebook-based CMVN (C-CMVN), linear regression (LR) and quadratic least square (QLS), on Test Sets A and B of Aurora 2 database.   

4. Comparing the different types of CMN and CMVN, it shows 

that the codeword-based CMN and CMVN are better than the 

utterance-based ones, respectively, in set A conditions. (In fact, 

it can be proved that codebook-based CMN is equivalent to 

CSC-1). Thus we may roughly conclude that the statistics 

estimated from the codebooks are more accurate than those 

from per utterance especially for stationary noise 

environments like set A.  

5. Finally, for the two regression approaches, we find both LR 

and QLS also significantly improves the recognition accuracy. 

In fact, LR and QLS are always better than the other all 

approaches. LR outperforms CSC-2 probably because it 

further considers the correlation between clean and noisy 

conditions, as stated in section 3. Also, QLS is originally 

expected to be better than LR since it uses higher-order 

polynomial and statistics, but it is not always the case. This is 

probably because the matrix 
TY Y  in eq. (9) is nearly 

ill-conditioned, or the over-fitting problem happens in QLS.  

6. Comparison with some other existing algorithms 

In the former researches, there are a series of approaches based 

on VQ codebooks for training and/or testing environments, like 

CDCN [4] and FCDCN [5]. Since no Expectation Maximization 

(EM) techniques or codeword-selection procedures are needed, 

the proposed codebook–based algorithms in this paper differ 

from these approaches primarily in their simplicity for 

realization. In addition, similar to feature-space MLLR [6], most 

of our proposed codebook-based approaches transform the 

testing features linearly. However, feature-space MLLR and all 

of them utilize different optimization criteria, and again they 

seem easier to perform than feature-space MLLR. According to 

[7], CDCN gives 71.74% and 73.36% and feature-space MLLR 

gives 72.27% and 74.72% averaged recognition rates for 

Aurora-2 Test sets A and B, respectively. Therefore, even if the 

proposed algorithms are simpler for realization, they can 

perform as well as, or sometimes even better than, the CDCN 

and feature-space MLLR.

7. Conclusions and Future Works 

In this paper, we design pseudo stereo codebooks that 

respectively represent the clean and noisy conditions. With these 

codebooks some novel noise robustness algorithms are proposed, 

including cesptral statistics compensation (CSC), 

codebook-based CMN and CMVN, linear regression (LR) and 

quadratic least square (QLS) regression methods. We show that 

all of them effectively improve the recognizer’s performance in 

additive noise environments. It is expected that these 

codebook-based approaches can be further enhanced if a voice 

activity detector (VAD) is applied to obtain the accurate noise 

estimate. Furthermore, we believe that the well known 

Histogram Equalization (HEQ) that roughly normalizes all 

statistics can be realized based on pseudo stereo codebooks, 

which can further improve the noise robustness of speech 

features.  
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