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ABSTRACT

We investigate a robust speech feature extraction method us-
ing kernel PCA (Principal Component Analysis). Kernel PCA
has been suggested for various image processing tasks requir-
ing an image model such as, e.g., denoising, where a noise-
free image is constructed from a noisy input image [1].

Much research for robust speech feature extraction has
been done, but it is difficult to completely remove the non-
stationary noise or reverberation. The most commonly used
noise-removal techniques are based on the spectral-domain
operation, and then for the speech recognition, MFCC (Mel
Frequency Cepstral Coefficient) is computed, where DCT (Dis-
crete Cosine Transform) is applied to the mel-scale filter bank
output. In this paper, we propose robust feature extraction
based on kernel PCA instead of DCT, where the main speech
element is projected onto low-order features, while noise or
reverberant element is projected onto high-order ones. Its ef-
fectiveness is confirmed by word recognition experiments on
reverberant speech.

1. INTRODUCTION

In hands-free speech recognition, one of the key issues for
practical use is the development of technologies that allow
accurate recognition of noisy and reverberant speech. Current
speech recognition systems are capable of achieving impres-
sive performance in clean acoustic environments. However, if
the user speaks at a distance from the microphone, the recog-
nition accuracy is seriously degraded by the influence of noise
and reverberation.

In current speech recognition technology, MFCC (Mel
Frequency Cepstral Coefficient) has been widely used. The
feature is derived from the mel-scale filter bank output by
DCT (Discrete Cosine Transform). The low-order MFCCs
account for the slowly changing spectral envelope, while the
high-order ones describe the fast variations of the spectrum.
Therefore a large number of MFCCs is not used for the speech
recognition, because we are only interested in the spectral en-
velope, not in the fine structure.

To solve problems caused by noise and reverberation, many
methods have been presented in robust speech recognition
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Fig. 1. Feature Extraction Using Kernel PCA

(e.g. [2, 3, 4, 5, 6, 7]). But it is difficult to completely re-
move the non-stationary noise or reverberation. The most
commonly used noise-removal techniques are based on the
spectral-domain operation, and then for the speech recogni-
tion, MFCC (Mel Frequency Cepstral Coefficient) is com-
puted, where DCT is applied to the mel-scale filter bank out-
put.

A feature extraction approach using kernel PCA has been
also proposed in [8][9], where the kernel PCA was applied
only to the low-order MFCCs which account for the spectral
envelope. In this paper we investigate robust feature extrac-
tion using kernel PCA instead of DCT, where kernel PCA is
applied to the mel-scale filter bank output (Fig. 1), because
we expect that kernel PCA will project the main speech ele-
ment onto low-order features, while noise (reverberant) ele-
ment onto high-order ones. Our recognition results show that
the use of kernel PCA instead of DCT provides better perfor-
mance for reverberant speech.

2. FEATURE EXTRACTION USING KERNEL PCA

PCA is a powerful technique for extracting structure from
possibly high-dimensional data sets. But it is not effective
for data with nonlinear structure. In kernel PCA, the input
data with nonlinear structure is transformed into a higher-
dimensional feature space with linear structure, and then lin-
ear PCA is performed in the high-dimensional space [10].

Given the mel-scale filter bank output xj at j-frame, the
covariance matrix is defined as

C =
1
N

N∑
j=1

Φ̄(xj)Φ̄(xj)T , (1)
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Φ̄(xj) = Φ(xj) − 1
N

N∑
j=1

Φ(xj), (2)

where the total number of frames is N , and Φ is a nonlinear
map.

Φ : Rd → R∞ (3)

Note that the data in the high-dimensional space could have
an arbitrarily large, possibly infinite, dimensionality, and d is
the dimension of x.

We now have to find eigenvalues λ and eigenvectors v
satisfying

λv = Cv, (4)

λ(Φ̄(xk) · v) = (Φ̄(xk) · Cv), k = 1, . . . , N (5)

Also, there exist coefficients αi such that

v =
N∑

i=1

αiΦ̄(xi). (6)

Substituting (1) and (6) in (5), we get for the left side of the
equation

λ(Φ̄(xk) · v) = λ
∑

i

αiΦ̄(xk) · Φ̄(xi)

= λ
∑

i

αiK̄ki, (7)

where

K̄ki = Φ̄(xk) · Φ̄(xi). (8)

Also, for the right side of the equation

Φ̄(xk) · Cv

= Φ̄(xk) · 1
N

∑
j

Φ̄(xj)Φ̄(xj)T
∑

i

αiΦ̄(xi)

= Φ̄(xk) · 1
N

∑
i

αi

⎧⎨
⎩

∑
j

Φ̄(xj)Φ̄(xj)T Φ̄(xi)

⎫⎬
⎭

=
1
N

∑
i

αi

⎡
⎣Φ̄(xk) ·

⎧⎨
⎩

∑
j

Φ̄(xj)Φ̄(xj)T Φ̄(xi)

⎫⎬
⎭

⎤
⎦

=
1
N

∑
i

αi

∑
j

{
Φ̄(xk) · Φ̄(xj)

} {
Φ̄(xj) · Φ̄(xi)

}

=
1
N

∑
i

αi

∑
j

K̄kjK̄ji. (9)

Thus we get

Nλα = K̄α

λ̂α = K̄α. (10)

Consequently, we only need to diagonalize K̄ which is com-
puted as follows.

K̄ij = Φ̄(xi) · Φ̄(xj)

= (Φ(xi) − 1
N

N∑
m=1

Φ(xm))

·(Φ(xj) − 1
N

N∑
n=1

Φ(xn))

= Φ(xi) · Φ(xj) − 1
N

∑
m=1

Φ(xm) · Φ(xj)

− 1
N

∑
n=1

Φ(xn) · Φ(xi)

+
1

N2

∑
m,n=1

Φ(xm) · Φ(xn)

= Kij − 1
N

∑
m=1

1imKmj − 1
N

∑
n=1

Kin1nj

+
1

N2

∑
m,n=1

1imKmn1nj (11)

Kij = Φ(xi) · Φ(xj) (12)

1ij = 1 for all i, j (13)

Using the N × N matrix (1N )ij := 1/N , we get the more
compact expression

K̄ = K − 1NK − K1N + 1NK1N . (14)

We thus can compute K̄ from K, and then solve the eigen-
value problem (10).

Let λ1≤λ2≤· · ·≤ λN denote the eigenvalues, and α(1),
· · · , α(N) the corresponding complete set of eigenvectors,
with λp being the first nonzero eigenvalue. We normalize
α(p), · · · , α(N) by requiring that the corresponding vectors
are normalized:

v(l) · v(l) = 1, for all l = p, · · · , N (15)

From (6) and (10) we get

1 =
N∑
i,j

α
(l)
i α

(l)
j (Φ(xi) · Φ(xj))

=
N∑
i,j

α
(l)
i α

(l)
j Kij

= (α(l) · K̄α(l))

= λ̂l(α(l) · α(l)). (16)

Therefore, we finally normalize α by

α̂(l) =
α(l)√

λ̂l

. (17)
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1. Compute the kernel matrix K of Eq. (12).

2. Compute the eigenvectors of Eq. (10) 

and normalize them by Eq. (17).

Compute the Principal Components

1. Compute the kernel matrix  of Eq. (19).

2. Compute projections of reverberant data

onto the eigenvectors by Eq. (18).
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Fig. 2. Procedure of Feature Extraction

Next, for feature extraction, we project test data y onto
eigenvectors v(l) in the high-dimensional space.

(v(l) · Φ̄(y)) =
N∑

i=1

α̂
(l)
i (Φ̄(xi) · Φ̄(y))

=
N∑

i=1

α̂
(l)
i K̄test(xi,y) (18)

Similar to (11), we can compute K̄test from Ktest.

K̄test
ij =

(
Φ(yi) − 1

N

N∑
m=1

Φ(xm)

)

·
(

Φ(xj) − 1
N

N∑
n=1

Φ(xn)

)
(19)

K̄test = Ktest − 1′
NK − Ktest1N + 1′

NK1N (20)

Here 1′
N is the L × N matrix with all entries equal to 1/N ,

and the total number of frames for the test data is L. The
procedure of the feature extraction is summarized in Fig. 2.

3. RECOGNITION EXPERIMENT

3.1. Experimental Conditions

The new feature extraction method was evaluated on reverber-
ant speech recognition tasks. Reverberant speech was sim-
ulated by a linear convolution of clean speech and impulse
response. The impulse response was taken from the RWCP
sound scene database [11]. The reverberation time was 470
msec. The distance to the microphone was about 2 m. The
size of the recording room was about 6.7 m × 4.2 m (width
× depth).

In order to compute the matrix K, it would be necessary
to use all the training data. But it is not realistic in terms
of the cost of the computation. Therefore, N = 2500 frames
were randomly picked up from the training data. Then, in this
experiments, we used polynomial kernel function.

K(x,y) = (x · y + 1)p (21)

The speech signal was sampled at 12 kHz and windowed
with a 32-msec Hamming window every 8 msec. The mod-
els of 54 context-independent phonemes were trained by us-
ing 2,620 words in the ATR Japanese speech database for the
speaker-dependent HMM. Each HMM has three states and
three self-loops, and each state has four Gaussian mixture
components. The tests were carried out on 1,000-word recog-
nition tasks, and three males spoke the 1,000 words. The
baseline recognition rate was 63.9%, where 16-order MFCCs
and their delta coefficients were used as feature vectors.

3.2. Experimental Results

Figure 3 shows the recognition rates using kernel PCA (p = 1
in polynomial function). As can be seen from this figure, the
use of kernel PCA instead of DCT improves the recognition
rates from 63.9% to 75.0%. Here, in the new feature extrac-
tion, kernel PCA was applied to 32 mel-scale filter bank out-
put, and then the delta coefficients were also computed. Fig-
ure 4 shows the recognition rates using kernel PCA (p = 2 in
polynomial function). These results clearly show that the use
of kernel PCA instead of DCT achieves good performance.

Next, we applied kernel PCA to 16-order MFCCs which
account for the spectral envelope [8][9]. The recognition rate
improved from 63.9% to 67.8%. As can be seen from Figure
4, a further improvement was obtained by the new method,
where kernel PCA was applied to the mel-scale filter bank
output. This is because it can expect that kernel PCA in the
spectral domain will project the main speech element onto
low-order features, while reverberant element onto high-order
ones.

Figure 5 shows the recognition rates for the clean speech
using kernel PCA. The recognition rate with the new feature
extraction was 97.6%, and the baseline performance using
DCT was 97.3%. In the clean environments, the experiment
results indicate that the new method achieves almost the same
performance as that by DCT.

4. SUMMARY

This paper has described a robust feature extraction technique
using kernel PCA instead of DCT, where kernel PCA is ap-
plied to the mel-scale filter bank output. It can expect that ker-
nel PCA will project the main speech element onto low-order
features, while reverberant (noise) element onto high-order
ones. From our recognition results, it is shown that the use of
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Fig. 3. Recognition rates for the reverberant speech (rever-
beration time: 470 msec) by the proposed method. (p = 1 in
polynomial function)
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Fig. 4. Recognition rates for the reverberant speech (rever-
beration time: 470 msec) by the proposed method. (p = 2 in
polynomial function)

kernel PCA instead of DCT provides better performance for
reverberant speech (reverberation time: 470 msec).
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