
ADAPTIVE REGRESSION BASED FRAMEWORK FOR IN-CAR SPEECH RECOGNITION

Weifeng Li�, Katunobu Itou†, Kazuya Takeda† and Fumitada Itakura‡

Graduate School of Engineering�, Graduate School of Information Science†, Nagoya University
Faculty of Science and Technology‡, Meijo University

Nagoya, 464–8603 Japan

ABSTRACT

We address issues for improving hands-free speech recognition per-
formance in different car environments using a single distant mi-
crophone. In our previous work, we proposed a regression based
enhancement method for in-car speech recognition. In this paper,
we describe recent improvements and propose a data-driven adap-
tive regression based speech recognition system, in which both fea-
ture enhancement and model compensation are performed. Based
on isolated word recognition experiments conducted in 15 real car
environments, the proposed adaptive regression approach shows an
advantage in average relative word error rate (WER) reductions of
52.5% and 14.8%, compared to original noisy speech and ETSI ad-
vanced front-end, respectively.

1. INTRODUCTION

The mismatch between training and testing conditions is one of the
most challenging and important problems in automatic speech recog-
nition (ASR). This mismatch may be caused by a number of factors,
such as background noise, speaker variation, a change in speak-
ing styles, channel effects, and so on. State-of-the-art ASR tech-
niques for removing the mismatch usually fall into two main cate-
gories: feature enhancement and model compensation. Feature en-
hancement algorithms attempt to transform the corrupted feature into
an estimate that more closely resembles clean speech, while model
compensation methods aim to adapt or transform acoustic models to
match the noisy speech feature in a new testing environment. Exam-
ples of the feature enhancement methods include spectral subtrac-
tion [1], Wiener filter, CDCN [2], and so on. Spectral subtraction
was originally proposed in the context of speech enhancement, but
it can be used as a preprocessing step for recognition. However, its
performance suffers from inaccurate or erroneous noise estimation.
CDCN may be somewhat intensive to compute since it depends on
the online estimation of the channel and additive noise through an
iterative EM approach. The representative methods in the model
compensation category include multi-style training, MLLR [3], and
Jacobian adaptation. Their main disadvantage is that they require
the retraining of a recognizer or adaptation data. On the other hand,
most feature enhancement and model compensation methods are ac-
complished by linear functions such as simple bias removal, affine
transformation, linear regression, and so on. It is well known that
distortion caused even by additive noise only is highly nonlinear in
the log-spectral or cepstral domain.

The use of a neural network allows us to automatically learn
the nonlinear mapping functions between the reference and testing
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environments. Such a network can handle additive noise, rever-
beration, channel mismatches, and combinations of these. Neural
network based feature enhancement has been used in conjunction
with a speech recognizer. For example, Sorensen used a multi-layer
network for noise reduction in the isolated word recognition un-
der F-16 jet noise [4]. Yuk and Flanagan employed neural net-
works to perform telephone speech recognition [5]. However, the
feature enhancement they implemented was performed in the cep-
tral domain and the clean features were estimated using the noisy
features only. In a previous work, we proposed a regression based
enhancement method for in-car speech recognition [6]. In the pro-
posed method, the log mel-filter-bank (MFB) outputs of clean speech
are approximated through the nonlinear regression of those obtained
from the noisy speech and estimated noise using a multi-layer per-
ceptron (MLP) neural network. Our neural network based feature
enhancement method incorporates noise estimation and can be viewed
as generalized log spectral subtraction.

In [6], each driving condition was assumed to be known as a
prior information. In this paper, we release this prior information and
develop a data-driven speech recognition system, where the regres-
sion parameters change adaptively for different driving conditions.
To further reduce the mismatch between training and testing condi-
tions, we synthesize the training data using the optimal regression
parameters, and train multiple HMMs over the synthesized data. We
also develop several HMM selection strategies. The devised system
results in a universal in-car speech recognition framework including
both the feature enhancement and model compensation.

The organization of this paper is as follows: In Section 2, we
describe the in-car speech corpus used in this paper. In Section 3,
we present the regression based feature enhancement and environ-
ment detection algorithms. In Section 4, we present the adaptive
regression based speech recognition framework. Section 5 outlines
the performance evaluation and Section 6 summarizes this paper.

2. IN-CAR SPEECH DATA AND SPEECH ANALYSIS

The speech data used are from CIAIR in-car speech corpus [7].
Speech signals are captured by a microphone set on the visor posi-
tion to the driver. The test data includes Japanese 50 word sets under
15 driving conditions (three driving environments× five in-car states
= 15 driving conditions, as listed in Table 1). For each driving condi-
tion, 50 words are uttered by each of 18 speakers. The training data
for acoustic modeling comprises a total of 7,000 phonetically bal-
anced sentences (3,600 sentences are collected in the idling-normal
condition and 3,400 are collected while driving a data collection
vehicle (DCV) around streets near Nagoya University (city-normal
condition)). 1,000-state triphone Hidden Markov Modes (HMMs)
with 32 Gaussian mixtures per state are used for acoustic modeling.
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Speech signals are digitized into 16 bits at a sampling frequency
of 16 kHz. For spectral analysis, a 24-channel MFB analysis is per-
formed on 25-millisecond windowed speech with a frame shift of 10
milliseconds. Spectral components lower than 250 Hz are filtered
out to compensate for the spectrum of engine noise, which is con-
centrated in the lower frequency region. The feature vector used for
speech recognition is a 25-dimensional vector (12 CMN-MFCC +
12 ∆ CMN-MFCC + ∆ log energy).

3. ALGORITHMS

3.1. Regression based feature enhancement

Let S(m, l), N̂(m, l) and X(m, l) denote the log mel-filter-bank
(MFB) outputs obtained from the reference clean speech1, noise and
the observed speech signals. m and l denote filter bank and frame
indexes, respectively. The hat above N denotes the estimated ver-
sion. The idea of the regression based enhancement is to approx-
imate S(m, l) with the combination of X(m, l) and N̂(m, l), as
shown in Fig. 1. In particular, we estimate Ŝ(m, l) by applying
multi-layer perceptron (MLP) regression method, where a network
with one hidden layer composed of 8 neurons is used, i.e.:

Ŝ(m, l) = f(X(m, l), N̂(m, l))

= bm +
8�

p=1

�
wm,p tanh

�
bm,p + w(x)

m,pX(m, l) + w(n)
m,pN̂(m, l)

��
,

where tanh(·) is the tangent hyperbolic activation function. The
parameters Θ = {bm, wm,p, w

(x)
m,p, w

(n)
m,p, bm,p} are found by mini-

mizing the mean squared error:

E(m) =

L�
l=1

[S(m, l) − Ŝ(m, l)]2, (1)

through the back-propagation algorithm [8]. Here, L denotes the
number of training examples (frames).

Although neural networks have been employed for feature com-
pensation (e.g. [4] [5]) with stereo data, our method incorporates
noise estimation and can be viewed as generalized log spectral sub-
traction. In this paper, the two-stage noise spectra estimator pro-
posed in [6] is used for noise estimation. Based on our previous
studies, the incorporation of the noise information offers a benefit
of 3% absolute improvement in recognition accuracies, compared to
that using the noisy features only.

1Speech collected with a close-talking microphone (with a headset) is
used for reference clean speech.

Table 1. 15 driving conditions (3 driving environments × 5 in-car
states)

idling
driving environment city driving

expressway driving
normal
CD player on

in-car state air-conditioner (AC) on at low level
air-conditioner (AC) on at high level
window (near driver) open
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Fig. 1. Concept of regression-based feature enhancement.

3.2. Driving environment detection

In this subsection, we discriminate in-car environments by using
the information of noise signals. Noise classification is a nontriv-
ial task in our studies since the difference among driving conditions
is not significant. An important step is feature selection. In our
studies, Mel-frequency cepstral coefficients (MFCC) were selected
because of their good discriminating ability, even in audio classifi-
cation (e.g. [9] [10]). The MFCC features are extracted frame by
frame from non-speech signals (preceding the utterance by 200 ms,
i.e., 20 frames), their means in one noisy signal are computed, and
they are then concatenated into a feature vector:

R = [µ1, . . . , µ12, µe], (2)

where µi and µe denote the means of i-order MFCC and log energy,
respectively. All of the 13 elements in R are normalized so that
their mean and variance across the elements are 0 and 1.0, respec-
tively. Prototypes of the noise clusters are obtained by applying the
K-means-clustering algorithm to the feature vectors extracted from
the training set of noise signals. In our experiments, the non-speech
signals by 12 speakers are used to cluster the noise conditions, and
those by another six speakers are used for testing, as shown in Fig.
2.

4. ADAPTIVE REGRESSION BASED SPEECH
RECOGNITION

4.1. Regression-based HMM training

In our previous work [11], we generated the enhanced speech sig-
nals, by performing the regression in the log spectral domain (for
each frequency bin). Though few “musical tone” artifacts were found
in the regression-enhanced signals compared to those obtained us-
ing spectral subtraction based methods, some residual noise still ex-
isted in the regression-enhanced signals. We believe there will exit a
mismatch between training and testing conditions, if we use HMM
trained over clean data to test regression-enhanced speech. There-
fore, we adopt the K sets of optimal weights obtained from each
clustered group to generate 7,000-sentence training data, i.e., we
simulated 7,000 × K sentences based on K clustered noise envi-
ronments. Next, K HMMs are trained over each of the simulated
7,000-sentence training data. On the other hand, because multi-style
training has been shown to be effective for improving the ASR per-
formance [12], a universal HMM is also trained over all the simu-
lated 7,000 × K sentences, as shown in Fig. 2.
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Fig. 2. Diagram of adaptive regression based speech recognition. X,
N̂, and S denote the log MFB outputs obtained from observed noisy
speech, estimated noise, and reference clean speech, respectively. R
denotes the vector representation of driving environment using Eq.
(2).

4.2. Adaptive recognition of an input signal

The recognition of an input signal consists of two phases: the feature
enhancement phase and the HMM selection phase. In the feature en-
hancement phase, for unknown input speech, we find a correspond-
ing noise group through the non-speech segments and perform the
estimation with the optimal weights for the noise cluster, i.e., the log
MFB outputs of clean speech can be estimated by

Ŝ = fk(X, N̂) (3)

where X and N̂ indicate the log MFB vector obtained from noisy
speech and estimated noise respectively. fk(·) corresponds to the
nonlinear mapping function in Section 3.1, where the cluster ID k is
specified by minimizing the Euclidian distance between R and the
centroid vectors.

In the HMM selection phase, beside a universal HMM obtained
using multi-style training, an HMM is selected from K HMMs based
on the following two strategies:

1. ID-based
This strategy tries to select an HMM that is trained with the
simulated training data close to the test noise environment,
i.e.,

Ĥ(x) =
K�

k=1

I(D(x), D(Hk))Hk (4)

where

I(D(x), D(Hk)) =

�
1, if D(x) = D(Hk)
0, otherwise

(5)

and D(x) = D(Hk) means that the cluster ID of an input
signal x is identical to that of kth HMM Hk.

2. maximum likelihood (ML) based
This strategy tries to select the HMM that outputs maximum
likelihood, i.e.,

Ĥ(x) = arg max
H

{P (x|H1), . . . , P (x|HK)} (6)

where P (x|Hk) indicates the log likelihood of an input signal
x by using kth HMM Hk.
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Fig. 3. Recognition performance for different clusters using adaptive
regression methods (averaged over 15 driving conditions).

4.3. Analysis of the proposed frmaework

There are some common points in SPLICE [13] and our feature en-
hancement phase. Both of them are stereo-based and consist of two
steps: finding the optimal “codeword” and performing codeword-
dependent compensation (see Eq. (3)). However, the proposed en-
hancement method does not need any Gaussian assumption required
in SPLICE and turns out to be a nonlinear compensation. Regression-
based HMM training and HMM selection can be viewed as a kind of
nonlinear model compensation, which can incorporate the informa-
tion of the testing environments. A combination of feature enhance-
ment and HMM selection results in a universal speech recognition
framework where both the noisy features and acoustic models are
compensated.

5. PERFORMANCE EVALUATION

Figure 3 shows the word recognition accuracies for different num-
bers of clusters using adaptive regression methods. It is found that
the recognition performance is improved significantly by using adap-
tive regression methods compared to those of “clean-HMM”, which
is trained over the speech at the close-talking microphone. As the
number of clusters increases up to four, the recognition accuracies
increase consistently due to there being more noise information avail-
able, however too many clusters (e.g., eight or above) yields a degra-
dation of the recognition performance. Although the three adaptive
regression based recognition systems perform almost identically in
the two-cluster case, “ID-based” yields a more stable recognition
performance across the numbers of clusters, and the best recognition
performance is achieved with four clusters.

For comparison, we also performed recognition experiments based
on the originally observed noisy speech (“original”), a MAP speech
amplitude estimator (“MAP”) [14], ETSI advanced front-end [15],
and an adaptive beamformer (“ABF”; Four linearly spaced micro-
phones with an inter-element spacing of 5 cm at the visor position are
used.). The acoustic models used for “MAP”, ETSI advanced front-
end and adaptive beamforming were trained over the training data
they processed. Figure 4 shows the recognition performance aver-
aged over the 15 driving conditions. “proposed” cites the best recog-
nition performance achieved in Fig. 3. It is found that all the en-
hancement methods outperform the original noisy speech. ETSI ad-
vanced front-end yields higher recognition accuracy than MAP. The
proposed method significantly outperforms ETSI advanced front-
end and even performs better than adaptive beamforming, which
uses as many as four microphones. Recalling Fig. 3, it is found
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Fig. 4. Recognition performance of different speech enhancement
methods (averaged over 15 driving conditions).

that even one cluster using the proposed method outperforms ETSI
advanced front-end. This clearly demonstrates the superiority of the
adaptive regression method.

We also investigated the recognition performance averaged over
five in-car states as shown in Fig. 5. It is found that the adaptive
regression method outperforms ETSI advanced front-end in all the
five in-car states, especially when AC is on at high level and when
the window near the driver is open. Adaptive beamforming is very
effective when the CD player is on and when the window near the
driver is open. This suggests that adaptive beamforming with multi-
ple microphones can suppress the noise coming from undesired di-
rections quite well due to its spatial filtering capability. However,
in the remaining three in-car states (diffuse noise cases), it does not
work as well as the adaptive regression method.

6. SUMMARY

In this paper, we have proposed a data-driven adaptive regression
based speech recognition system, which includes the driving envi-
ronmental detection, the regression based feature enhancement, and
the HMM selection. The devised system turns out to be a universal
speech recognition framework that performs both feature enhance-
ment and model compensation. The superiority of the proposed sys-
tem was demonstrated by a significant improvement in recognition
performance in the isolated word recognition experiments conducted
in 15 real car environments.
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