
SPEECH FEATURE ESTIMATION UNDER THE PRESENCE OF NOISE 

WITH A SWITCHING LINEAR DYNAMIC MODEL 

Jianping Deng, Martin Bouchard, and Tet Hin Yeap

School of Information Technology and Engineering, University of Ottawa 

800 King Edward, Ottawa (Ontario), K1N 6N5, Canada 

jdeng,bouchard,tet@site.uottawa.ca

ABSTRACT 

This paper presents an approach to enhance speech feature 

estimation in the log spectral domain under noisy 

environments. A higher-order switching linear dynamic 

model (SLDM) is explored as a parametric model for the 

clean speech distribution, which enforces a state transition 

in the feature space and captures the smooth time 

evolution of speech conditioned on the state sequence. 

The clean speech components are estimated by means of 

an Interacting Multiple Model (IMM) algorithm. Our 

experimental results show that increasing the order of the 

linear dynamic model in the SLDM and the introduction 

of transition probabilities among the linear dynamic 

models can improve the performance of SLDM systems in 

feature compensation for robust speech recognition. 

1. INTRODUCTION 

The performance degradation of a speech recognizer in 

the presence of additive noise is one of the major 

problems that still remain unsolved in the real-field 

applications of speech recognition technology. Towards 

solving the noise robustness problem, in the past few 

years a variety of noise compensation techniques have 

been developed. One of the prevailing approaches is 

model based feature enhancement [1]-[7]. It is believed 

that enhancement in the cepstral or log domain is most 

desirable if the purpose of speech enhancement is for 

robust speech recognition, since this is the domain as 

close as possible to the back end of the recognizer [5]. 

Such systems include a model for speech, and also often a 

model for noise within the enhancement algorithm, where 

the speech is treated as the nonlinear obscuring influence 

that prevents us from observing the noise [2]-[4]. When 

the speech model is a Gaussian mixture model (GMM), 

each frame of speech is enhanced independently. 

To take advantage of the temporal correlations among 

adjacent frames of a speech signal, a switching linear 

dynamic model (LDM) was proposed in [6]. In the 

switching LDM, as time progresses the signal passes 

through several distinct states. The linear dynamics of the 

model capture the smooth time evolution of speech, 

conditioned on the state sequence. Very recently, Kim et 

al [7] further improved this technique by incorporating the 

SLDM of speech with a noise model. Both the noise and 

clean speech components are estimated simultaneously 

during the feature compensation using an IMM algorithm. 

This recent work by Kim et al [7] bears some 

similarity with our method described in this paper. 

However, our work was developed independently and 

there are three important differences between our method 

and the method presented in [7]. First, the SLDM in [7] 

uses a first-order AR to predict the tth speech spectral 

vector. In our SLDM, we investigate the use of a second 

order AR model for spectral vector prediction. To the best 

of our knowledge, the explicit use of higher-order SLDM 

to model the spectral vector for feature compensation has 

not been reported so far. 

Second, the SLDM used in [7] assumes time 

dependence among the continuous speech in one state, but 

not among the discrete states. To further take advantage of 

the temporal correlations among adjacent frames of the 

speech signal, our work includes the time-dependence 

among the discrete state variables by augmenting the 

SLDM with discrete state transition probabilities. As 

suggested by Droppo et al [6] in their future work, the 

state transition probabilities of HMM tend to eliminate 

single frame errors in the output.  

Third, the estimation process of the SLDM 

parameters is different. In [7], the statistics to estimate the 

SLDM parameters were computed based on a cluster 

index that was obtained with a suboptimal approach. The 

current paper finds the maximum likelihood (ML) 

estimates of the parameters for the SLDM.  

We present preliminary results demonstrating that, 

even with relatively small model sizes, substantial word 

error rate improvement can be obtained compared with a 

baseline recognizer. The rest of this paper is organized as 

follows: Section 2 describes how to model the sequence of 

clean speech features by a switching LDM. The method to 

compensate the noisy feature is presented in Section 3.  

Section 4 describes the experiments and presents the 

results. Conclusions are given in Section 5. 
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2. SLDM FOR CLEAN SPEECH FEATURES  

To describe the clean speech features distribution, a 

switching linear dynamic model (LDM) obeys the system 

equation  

tptisptisist ttt
eyByBµy ,1,1 ...        (1) 

Equation (1) could be rewritten in the short-hand form 

ttisist tt
exBµy                                            (2)

where xt is the column vector T

ptt ],[ 1 yy and
is t

B

is matrix
ispis tt ,,1 BB . B and µ are dependent 

on a hidden variable st at each time t. The state-dependent 

residual et has a Gaussian distribution with zero mean and 

covariance matrix 
ts . The graphical representation of 

the switching LDM used is shown in Figure 1, where 

shaded nodes are observed, and clear nodes are hidden. It 

depicts the special case where p=1. 

    Fig. 1 Graphical representation of the switching LDM  

It is seen from Fig.1 that unlike the SLDM presented in 

[6] and [7], the time-dependence among the discrete state 

variables and adjacent frames of speech are included. In 

this paper, the order p of the linear dynamic model is set 

to 2. Assume that the discrete hidden states follow a 

Markov chain process with N states and that the state 

transition matrix is defined as  
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The parameters {
iii µB ,, } associated with the specified 

SLDM can be estimated from a set of clean speech 

training data using the standard EM algorithm [8]. The 

algorithm then iterates, using the current parameter 

estimate to compute the expected state occupancy  

)|Pr()( :1Titsit y                                                 (4) 

where )(it  is the probability that the HMM is in state i

at time t, and it is calculated by the forward-backward 

algorithm [9]. The EM algorithm requires us to maximize 

the following expected log-likelihood, ),( 0 MMQ , by 

choosing the parameters of the new model M.
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M0 is the model corresponding to an initial estimate of the 

parameters, )|( :10 TtM sP y  stands for the probability of 

ts  conditioned on the observation sequence T:1y ,

calculated using the parameters of the model M0. To 

present the result of this maximization, the following 

expected sufficient statistics are first introduced: 
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Maximizing ),( 0 MMQ with respect to 
iB  and setting 

the derivative to zero, the following equation is obtained 
1

,'

'

,,' )( iXXiXiiYXi SSS µB                                                  (7)

Likewise, setting the derivatives of the objective function 

with respect to iµ  to zero, another vector equation is 

obtained 

i
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where

t

ti i)( . The new estimates for iµ  and 
iB  can 

now be obtained by solving the pair of simultaneous 

equations. Likewise, the re-estimation formula for i  is:
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The re-estimation formula for the state transition matrix is 

the same as an HMM [9]: 

i
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3. CLEAN FEATURES ESTIMATION 

Assume that speech and noise are mixed linearly in the 

time domain. This corresponds to a nonlinear mixing in 

the log spectrum feature space as follows [1]: 

))exp(log(),( tttttf ynynyo t I        (11) 

in which ot, yt and nt respectively represent the log 

spectrum of noisy speech, the hypothetical clean speech 

and noise at the tth frame. 

To take into account the time-varying characteristics 

of the background noise, we model the sequence of noise 

features as the output of a first-order auto-regressive (AR) 

system excited by a zero mean Gaussian process v with a 

covariance matrix Qn as follows [2]:  
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In the experiments for this paper, a noise-type specific 

model was built from 30 seconds of training samples of 

the noise. Combining equation (2) with (11) and (12) 

leads to a nonlinear state space model as: 
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Both noise and clean speech components are incorporated 

in the state space, and are estimated simultaneously.  

The major obstacle to use the switching LDM for 

enhancement is the computational burden that it brings. 

Optimal minimum mean squared error estimators involve 

a bank of filters tuned to all the possible parameter 

histories, which makes the cost in computations grow 

exponentially with data length [10]. To solve this 

problem, we show in this paper how the Interacting 

Multiple Model (IMM) algorithm [10] can be adapted to 

the nonlinear state-space model of feature dynamics 

presented above, to provide a sub-optimal approximation 

solution. A block diagram of the IMM algorithm is shown 

in Fig. 2. 

1

11

1

11
,

tttt
Vz

2

11

2

11
,

tttt
Vz

1

11

1

11

~
,~

tttt
Vz

2

11

2

11

~
,~

tttt
Vz

11 ,
tttt

Vz
22 ,
tttt

Vz
Merge

Filter 1

Filter 2

Fig. 2   IMM algorithm 

There are N filters, each of which is supplied with a 

different input. Let us define 
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The algorithm mixes the estimates according to the 

Markov transition probability, in order to allow the system 

to react to changes in the model in force. In that way, the 

input to the jth filter becomes the best estimate of the state 

at time instant t-1, conditioned on the event that model j is 

in force at time instant t (the new sample time). j

tt 11

~z  and 

j

tt 11
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V  are then obtained according to 
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The mixing probability 
1:11
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computed recursively with Bayes’ rule 
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The extended Kalman filter algorithm for each filter 

becomes: 
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where ][ 00 BAH , A0 and B0 are the Jacobian 

matrices with respect to y and n . From our experiments, 

we found that the extended Kalman filter can bring better 

results than approximating the observation equation (11) 

by a piecewise linear model and then using the linear 

Kalman filter, as was done in previous work [3][7]. 

The model probabilities )|Pr( :1 tt is o are updated 

according to 
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where  is a scale factor. 
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The estimated output at time t is calculated according to 
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4. EXPERIMENTS 

The performance of the proposed method was evaluated 

with continuous digits recognition experiments. The 

speech data used for the experiments is from the Numbers 

v1.3 corpus provided by the Oregon Health & Science 

University (OGI). The corpus is a collection of 8kHz 

telephone speech data [11]. A 12th order cepstral 

coefficient vector was derived for each frame of 32ms. 

The derived cepstrum vectors and their first and second 

order derivatives were used for recognition. The 

recognition system used in the experiments was based on 

a continuous HMM model. Both the training and the 
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recognition phases were performed using the HTK 

toolbox [12]. In the testing stage, 100 utterances with 

fixed-length 5 connected digits from the database were 

used.  Background noises (from the ITU-T Supplement 

P.23 database) were artificially added to the speech 

signals by a computer, with SNR varying from 0 dB to 

15dB.  

Speech features from 50 clean utterances were used 

to train the SLDM parameters, as described in section 2. 

The number of states used for the SLDM was 8. For each 

frame, the noisy 20th order mel-scaled log spectrum was 

transformed to clean feature estimation. Figs. 3,4 show the 

average word error rate (WER) for white noise and babble 

noise mixtures. The proposed SLDM was tested with an 

AR model order of 1 and 2. The results are presented by 

‘proposed-p=1’ and ‘proposed-p=2’ in the figures. For the 

purpose of comparison, we also tested with the previous 

IMM-GMM algorithm [4], where the clean speech feature 

vectors were modeled by a mixture of 18 GMM 

distributions, without any consideration for the temporal 

correlation. We also tested the IMM-SLDM algorithm 

proposed in [7] but with extended Kalman filter, and the 

SLDM was modeled using the method described in [6], as 

we found the structure of SLDM in [6] and [7] to be 

similar, the only difference being in the methods for 

finding the sufficient statistics to update the LDM 

parameters in the M step. The results are represented by 

‘IMM-SLDM1’ in the figures. ‘No NR’ denotes a result 

without noise reduction.   

The results show that the switching linear dynamic 

model approach with either the SLDM1 or the proposed 

SLDM is effective at improving the recognition 

performance and provides better results compared with 

the IMM-GMM. For both white noise and babble noise, 

the ‘proposed-p=1’ and ‘proposed-p=2’ show their 

superiority to their SLDM1 counterpart. At the same time, 

for all SNRs, the ‘proposed-p=2’ outperforms the 

‘proposed-p=1’. We can conclude that the second order 

SLDM is a better way to characterize the clean speech 

features distribution, and that the introduction of transition 

probabilities among linear dynamic models can further 

improve the performance of SLDM systems. 

5. CONCLUSIONS 

This paper explores the use of a switching linear dynamic 

model (SLDM) for speech features enhancement under 

the presence of noise in the log-spectral domain. The 

SLDM can capture the temporal correlations among 

adjacent frames of speech in a more accurate way 

compared with previous work. The simulation results 

show that this approach can reduce the word error rate, 

even with a simple structure specification for the SLDM.  
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