
TEMPORAL MODELLING AND KALMAN FILTERING OF DFT

TRAJECTORIES FOR ENHANCEMENT OF NOISY SPEECH 

Esfandiar Zavarehei, Saeed Vaseghi, Qin Yan 

School of Design and Engineering, Brunel University, London UK 

{esfandiar.zavarehei, saeed.vaseghi, qin.yan}@brunel.ac.uk 

ABSTRACT

This paper presents a time-frequency estimator for enhancement of 

noisy speech in the DFT domain. The time-varying trajectories of 

the DFT of speech and noise in each channel are modeled by low 

order autoregressive processes incorporated in the state equation of 

Kalman filters. The parameters of the Kalman filters are estimated 

recursively from the signal and noise in DFT channels. The issue 

of convergence of the Kalman filters to noise statistics during the 

noise-dominated periods is addressed and a method is incorporated 

for restarting of Kalman filters after long periods of noise-

dominated activity in each DFT channel. The performance of the 

proposed method is compared with cases where the noise 

trajectories are not explicitly modeled. Evaluations show that the 

proposed method results in substantial improvement in perceived 

quality of speech. 

1. INTRODUCTION 

Speech enhancement improves the quality and intelligibility of 

voice communication for a range of applications including mobile 

phones, teleconference systems, hearing aids, voice coders and 

automatic speech recognition.  Among different solutions proposed 

for enhancement of noisy speech, restoration of short-time speech 

spectrum has been extensively studied [1][2]. This approach is 

normally based on estimation of the short time spectral amplitude 

(STSA) of the clean speech using an estimate of the signal-to-noise 

ratio (SNR) at each frequency.  The effect of phase distortion is 

assumed to be inaudible. 

An alternative to estimation of the STSA is the estimation of the 

real and imaginary components of the DFT of the clean speech.  

The MMSE estimation of the DFT components with Gaussian 

priors, leads to the well-known Wiener filter solution [3] while the 

MMSE estimation of the STSA within the same set of Gaussian 

assumptions results in Ephraim’s noise suppression method [1]. In 

recent years Martin has proposed the use of Gamma and Laplacian 

distributions for modeling the real and imaginary components of 

the DFT of speech [3].  

Speech enhancement methods often assume that the spectral 

samples are independent identically distributed (IID) samples 

across frequency and time dimensions. However, there seems to be 

an apparent contradiction [4]; these same methods that start with 

the IID assumption, often also use the assumption of the 

dependency of successive frames for the calculation and 

smoothing of some key speech parameters such as the SNRs 

[1][3][5]. 

The modeling and utilization of the time-varying trajectory of 

speech and noise spectrum is the main focus of this paper. In this 

paper, the temporal trajectory model of the DFT of speech and 

noise are used in a more rigorous mathematical framework for a 

more reliable estimation of speech spectra. The use of Gaussian 

priors lends itself to application of Kalman filter for modeling the 

temporal trajectories of the DFT of speech. A set of AR models are 

incorporated in Kalman filters for adaptive estimation and 

modeling of the temporal trajectories of the DFT of the speech and 

noise signals.

The rest of this paper is organized as follows. Section 2 discusses 

the modeling of the samples of the temporal trajectories of DFT 

components. In Section 3 the Kalman estimator of DFT trajectories 

is introduced. In Section 4 the empirical issues and the parameter 

estimation of the new estimator are discussed. In section 5 the 

evaluation results are compared with other methods of speech 

enhancement. Conclusions are drawn in Section 6. 

2. MODELLING DFT TRAJECTORIES 

In this section the temporal dependency and predictability of the 

trajectory of the DFT components are examined. The level of 

correlation between successive temporal samples of DFT 

components varies for different frequencies as well as different 

phonemes (i.e. along time and frequency). Moreover, the 

probability distributions of DFT components are strongly 

dependent on the frequency channel and the phoneme under study. 

Figure 1 illustrates the distribution of DFT components of channel 

26 (1000 Hz) for phoneme /ah/. The data is obtained from 130 

sentences spoken by a male speaker selected randomly from the 

Wall Street Journal (WSJ) database. It is evident from Figure 1 

that the peak of the histogram is modeled better with a Gamma 

distribution while the sides tend to fit a Gaussian distribution.

Table 1 shows the average symmetric Kullback-Leibler distance 

(SKLD) [6] between histograms and parametric distributions. 

These results show that, on average, Gamma distribution models 

the distribution of DFTs of speech better than Gaussian 

distribution. This is observed from the SKLD of speech with 

parametric distributions. It is also observed that most noise types 
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Figure 1: Normalized histogram of ST-DFT components for 

channel 26 (1 kHz), Phoneme /ah/
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Table 1. Average SKLD between the histograms and different

parametric distributions for speech (averaged over all

phonemes/frequency channels for 130 labeled sentences spoken by

a male speaker) and different noise types 

Distribution Gaussian Laplacian Gamma

Speech 0.81 0.62 0.56

Car noise 0.04 0.10 0.85

Train noise 0.15 0.05 0.22

Babble noise 0.69 0.51 0.46

Helicopter fly-by noise 0.12 0.15 0.59

White Gaussian 0.01 0.22 0.83
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Figure 2: Averaged absolute correlation in ST-DFT trajectories. 

have a reasonably low SKLD with the Gaussian distribution. 

However, as often, a compromise, between the complexity and the 

mathematical tractability of the model, suggests the use of 

Gaussian distribution and Kalman filters for modeling the temporal 

trajectories of DFT. The real part of the DFT of clean speech, 

Sr(n), can be modeled using an AR process: 

1

N

r k r r
k

S n a n S n k e n    (1) 

where Sr(n) is the real part of the DFT of clean speech at frame n

of an arbitrary frequency channel, ak(n) is the kth AR coefficient at 

the nth frame of the same frequency channel, er(n) is the 

corresponding estimation error and N is the model order. 

Moreover, it is assumed that Sr(n) is a stationary process within the 

prediction period. Assuming Gaussian distributions for DFT 

components, the MMSE linear predictor (LP) coefficients of 

Equation (1) can be obtained using Yule-Walker equation: 

nnn
rsrs rRa 1                   (2) 

where  and n
rsR n

rsr  are the autocorrelation matrix and 

vector of the real part of speech DFT, Sr(n)=[Sr(n), … Sr(n-L+1)]T,

respectively and a(n) is the AR coefficient vector at frame n. A 

similar equation stands for the imaginary component of the DFT. 

The speech frame length, overlap size and the LP order should be 

carefully chosen to comply with the stationarity assumption of 

Equation (1), that is between say 20-40 ms. 

Figure 2 illustrates the correlation coefficients between delayed 

samples of the DFT of noise and speech signals, averaged over all 

frequency channels. Note however, that while the correlation 

coefficient may be negative, it is the absolute value which shows 

the level of correlation. It is evident that although, due to the frame 

overlap, there is a correlation between successive samples of DFT 

of noise, this does not vary much with the noise type and is less 

than that of speech. The shift-size used in Figure 2 is 5ms and the 

frame size is 25ms which experimentally proved to result in good 

noise reduction.

3. KALMAN DFT TRAJECTORY RESTORATION 

This section presents the formulation of Kalman filters for 

restoration of DFT trajectories. It is assumed that the clean speech 

signal s(t) is contaminated by the additive background noise d(t)

uncorrelated with the speech signal. The noisy speech signal x(t) is 

modelled as: 

tdtstx     (3) 

where t denotes time. For each frequency channel Equation (3) is 

rewritten in DFT domain as:

nDnSjnDnSnjXnX iirrir       (4) 

where the subscripts r and i represent the real and imaginary parts 

of DFT respectively and n denotes frame index. It is assumed that 

the real and imaginary parts of the DFT are independent and have 

Gaussian distributions. The independency assumption of the real 

and imaginary components is verified from a study of the scatter 

plots of the real and imaginary parts of the DFT coefficients of 

clean speech [3][7]. The real part of the DFT of noise, Dr(n), is 

modeled using an AR model as: 

1

M

r k r r
k

D n b n D n k g n   (5) 

where Dr(n) is the real part of the DFT of noise at frame n of an 

arbitrary frequency channel, bk(n) is the kth AR coefficient at the 

nth frame of the same frequency channel, gr(n) is the corresponding 

estimation error which has a variance of  and M is the 

model order. Following straight-forward algebra manipulation, 

equations

2

rg n

(1), (4) and (5) for the real part may be represented in 

canonical form: 

1r r r c rn n nX A X G E n   (6) 

r c rX n H X n     (7) 

where the state vector Xr(n) is defined as: 

TT T
r r rn n nX S D    (8) 

1
T

r r rn S n N S nS   (9) 

1
T

r r rn D n M D nD  (10) 

where Sr and Dr are speech and noise state vectors respectively. 

The transition matrix Ar(n) is given by: 

r
r

r

n
n

n

F 0
A

0 B
   (11) 

Fr(n) and B Br(n) are speech and noise transition matrices 

respectively: 

1 2 1

0 1 0 0

0 0 1 0

0 0 0 1

r

N N N

n

a n a n a n a n

F  (12) 

1 2 1

0 1 0 0

0 0 1 0

0 0 0 1

r

M M M

n

b n b n b n b n

B  (13) 

Er(n) is the AR error vector of noise and speech and Hc and Gc are 

constant vectors defined below: 
T

r r rn e n g nE    (14) 
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c

N

M

U 0
G

0 U
   (15) 

T T
c N MH U U    (16) 

where U(N) is a N×1 vector defined as: 

1

0 0 1

TN

NU    (17) 

A prediction of the state vector is obtained from the previous state 

vector using the transition matrix A(n) as: 

ˆ ˆ ˆE | 1r r r r rn n n n nX X X A X 1

T

 (18) 

where  is the estimate of Xˆ 1r nX r(n-1). As er(n) and gr(n) are 

orthogonal to and each other, the prediction error 

covariance matrix is calculated as: 

ˆ 1r nX

1 T
rc r rc r c cn n n n nP A P A G G   (19) 

(n) is a 2×2 matrix defined as: 

2

2

0

0

r

r

e

g

n
n

n
   (20) 

and 1rc nP is the state estimation error covariance matrix. Note 

that the innovation here is the difference between the predicted 

noisy signal and the observed noisy signal as according to 

Equation (7) there is no “noise” added to HcX(n). Incorporating 

the innovation in the current noisy observation, the optimum 

estimate of the state vector is calculated as: 

ˆ ˆ ˆ
r r rc r c rn n n X n nX X K H X

n

1

  (21) 

where Krc(n) is the Kalman gain vector: 

1T T
rc rc c c rc cn n nK P H H P H   (22) 

Note that  is a scalar value. The estimation error 

covariance of this estimate, P

T
c rc cnH P H

rc(n), is obtained as: 

rc rc c rcn nP I K H P   (23) 

The same set of equations holds for the imaginary component of 

all frequency channels with nonzero imaginary parts. The 

estimated clean speech DFT is the by-product of the X in Equation 

(21).

4. PARAMETER ESTIMATION 

As the autocorrelation of the DFT trajectories of clean speech is 

not available for estimation of AR parameters in Equation(2), the 

autocorrelation vector obtained from the past restored samples is 

used. That is: 
1ˆˆ ˆ1sr srn n na R r    (24) 

The autocorrelation vector and matrix are calculated from the past 

L=8 samples (with a shift-size of 5ms this is equivalent to 40ms). 

An implementation issue arises from the feedback of restored 

speech for calculation of AR parameters using Equation (24).

During long (typically >200ms) noise-only periods, where the 

variance of the noisy signal is equal to that of noise, the recursive 

solution given by Equations (19) and (22), results in convergence 

of the output of Equations (21) towards zero which consequently 

decreases the variance of prediction error, , towards zero. 

In other words, the Kalman filters speech output converges to zero 

during noise-only periods. At the beginning of the speech signal, 

just after a long noise-only period, due to the suppression of noise 

and the absence of speech the prediction of the DFT trajectories 

will be very small with a consequently small prediction error 

variance, , which results in a high weight for the prediction 

of the state vector (very small Kalman gain) and zeroing of the 

output speech signal. In order to prevent the consequent zeroing of 

speech following a long period of speech inactivity the value 

of  needs to be revived from zero at the beginning of speech 

active periods.  This is achieved by ensuring that values of 

will not be less than a dynamic threshold which is a fraction of the 

noisy signal energy at each time-frequency bin. That is:  

2

re n

2

re n

2

re n

2

re n

22 2 2ˆ max ,
r re en n X n    (25) 

This limits the prediction error variance to a small portion of the 

instantaneous power spectrum of noisy speech. Equation (25)

implies that the DFT trajectories can be only predicted with a 

limited precision, i.e. the prediction error variance cannot be 

smaller than a threshold proportional to the variance of the noisy 

speech. Very small values for  proved to be sufficient for 

reviving the converged trajectories of  and the signal at the 

beginning of speech activity (e.g.  =0.07). 

2

re n

In order to obtain the AR models of the DFT trajectories of noise 

for each frequency channel, the autocorrelation of the DFT 

trajectories are obtained and smoothed during the noise-only 

periods. These autocorrelation vectors are obtained using L

samples of the real and imaginary components separately and then 

averaged for each time step. That is, the same AR model is used 

for the real and imaginary components of each channel of noise. 

5. EVALUATION RESULTS 

The evaluation of the performance of DFT-Kalman filter with 

correlated noise model (DFTKCN) described in section 3, for 

enhancement of speech signals corrupted by background noise is 

carried out using subjective and objective measures. Various types 

and levels of noise are added to the speech signals selected from 

the WSJ speech database. The noisy signals are segmented using 

25ms hamming windows with a shift size of 5ms. The car noise 

signal is recorded by our colleagues in a 3-series BMW at 70 Mph 

in a rainy day and the train noise is recorded in a moving train. The 

parameters used in Kalman method are: Autocorrelation length 

L=8, LP orders N=4 and M=2 and =0.07.

5.1. Mean Opinion Score (MOS) 

A set of twenty sample sentences are drawn from WSJ database 

and contaminated by car noise and train noise at two different 

SNRs, 0dB and 10dB. The resulting noisy speech sentences are 

then de-noised using four different methods: (i) parametric spectral 

subtraction (PSS) [2], (ii) MMSE log-STSA [5], (iii) DFT-Kalman 

filter with uncorrelated noise model [8] (DFTKUN) and (iv) 

DFTKCN. Note that in the first two methods decision-directed 

method is used for tracking the a priori SNR [1]. Ten trained 

listeners were asked to score the quality of the resulting output 

signals from 1 to 5, based on the perceptual ease of understanding 

(intelligibility) and the comfort of listening (less annoying noise). 

The mean opinion score results are presented in Table 2. The 

results of Table 2 show that the Kalman filter outputs are preferred 

by the listeners. As often, the extent of validity of these results is 

limited by the number of listeners and test sentences used. 
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5.2. Objective Evaluation 

From a number of different speech quality and distortion measures 

applied to the restored sample speech sentences of section 5.1, six 

are listed in Table 3. The correlation coefficient of each distortion 

measure with MOS was calculated and the three most correlated 

distortion measures were chosen for further objective evaluation of 

the performance of different methods. Table 3 summarizes the 

correlation coefficients between MOS and six of the most popular 

objective measures obtained from this experiment. 

Performance of the DFTKCN in presence of car and train noise 

is evaluated using Itakura-Saito distance (ISD), Log-Likelihood 

ratio (LLR) [9] and Perceptual Evaluation of Speech Quality 

(PESQ) scores. One hundred sentences spoken by 20 speakers (10 

Females and 10 Males) are randomly selected from WSJ database 

and contaminated by train and car noise at different noise levels. 

These noisy signals are then de-noised using PSS, MMSE, 

DFTKUN and DFTKCN methods and their distortion measures are 

obtained. The averaged results of the distortion measures are 

summarized in Table 4.  

5.3. Discussion 

Informal listening tests and comparisons of the quality of the 

output of the DFTKUN and DFTKCN methods with the MMSE 

log-STSA method reveal some major differences. The level of 

residual noise of DFT-Kalman methods is much less than that of 

MMSE. While DFTKUN slightly distorts the low energy portions 

of speech signal spectra as a result of the convergence of signal to 

small values. Due to this effect, at lower SNRs, the harmonics of 

the speech are well restored while the non-harmonic portions of 

the speech spectrum are relatively suppressed. This effect is 

mitigated in DFTKCN, while maintaining a similar or lower level 

of residual noise. Moreover, DFTKCN results in much less echo 

level than DFTKUN method producing a more natural-sounding 

speech signal. While the nature of the residual noise in spectral 

subtraction is musical (short bursts of narrowband energy), the 

residual noise of DFT-Kalman methods seems to have the same 

perceptual characteristic of the original noise.

Table 2: Mean opinion score results 

SNR Noise DFTKUN DFTKCN MMSE PSS Wiener 

Car 3.7 3.8 3.5 3.4 3.20dB

Train 2.7 2.9 2.0 2.0 2.1

Car 4.5 4.7 4.6 4.4 4.210dB

Train 3.7 3.9 3.7 3.3 3.5

Table 3: The correlation coefficient  of MOS and objective 

evaluation results 

PESQ LLR ISD Kullback SegSNR SNR

0.86 -0.69 -0.61 -0.45 0.24 0.07

6. CONCLUSION 

A method is proposed for the enhancement of speech signals 

corrupted with background noise. The overall performance of the 

proposed method is shown to outperform MMSE log-STSA 

estimator and parametric spectral subtraction. Listening tests show 

that the residual noise of DFT-Kalman methods is not composed of 

annoying narrowband noise bursts, ‘musical tones’. Informal 

experiments show that if the AR model of the DFT trajectories of 

clean speech are provided to the system (even in the case of using 

averaged models for the noise obtained from noise-only periods), 

the DFTKCN results in exceptionally superb quality of the de-

noised speech. This suggests that the use of more sophisticated 

methods for estimation of the speech AR models is expected to 

result in further gain in the performance of the DFT-Kalman 

methods. The application of Expectation-Maximization (EM) 

methods for this purpose is being studied [10]. 
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