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ABSTRACT
In this paper we address the application of a denoising algo-

rithm based on wavelet package decomposition and quantile noise

estimation to noise suppression for automatic speech recognition.

The denoising algorithm is adapted to suit the different requirements

in machine recognition, as compared to human perception, and is

tested in combination with state-of-the-art speech recognition sys-

tems. The results show, that, if the proposed algorithm is integrated

with the recognition system—including the training process—a per-

formance comparable to recent high-quality noise suppression meth-

ods is achieved.

1. INTRODUCTION

Noise suppression is a highly important task to increase the recog-

nition performance and user acceptance of current automatic speech

recognition (ASR) systems. In particular when ASR systems are

used in environments where it is not possible to use close talking

microphones and with strong sources of background noise—like

for hands-free applications in cars—robust noise suppression is re-

quired. A specific challenge are non-white and non-stationary noise

sources, as well as tonal and approximately cyclo-stationary noise

sources, emitted, for example, from machines or fans. The applica-

tion of ASR in such a harsh environment is considered in the Eu-

ropean project SNOW (Services for NOmadic Workers), where the

task is to provide ASR for workers in a factory floor environment,

namely in airplane maintenance.

In this paper we develop the wavelet packet decomposition

(WPD)-based denoising algorithm which was proposed in [1] for

the application in ASR systems. The advantage of the wavelet trans-

form is the multiresolution analysis which provides a multiscale de-

composition of a signal. For denoising of speech signals targeted

at increased intelligibility and perceptual comfort for the human lis-

tener this algorithm was found to achieve a robust attenuation of

background noise and still to preserve intelligibility and naturalness.

However, the increase in perceptual quality of a speech signal may

not be directly related to an increase in recognition rate of an ASR

system. Thus, the proposed algorithm is modified, as described in

the following Sect. 2, in order to better meet the requirements in

ASR. In Sect. 3 we assess the performance of the enhanced algo-

rithm regarding the influence on the recognition rate of ASR systems

We kindly acknowledge the support by the European Union for the
FP6 IST STREP SNOW (FP6-511587). Furthermore, we sincerely thank
our SNOW project partner Loquendo, in particular Luciano Fissore, for the
speedily dispatch of running a recognition test on our data within less than
12 hours after our request!

in the rough acoustic environment described above. The final section

presents the conclusions and an outlook on steps for the further de-

velopment.

2. NOISE SUPPRESSION ALGORITHM

The algorithm for noise suppression for ASR presented here is based

on the denoising algorithm presented in [1]. The noisy speech signal

is segmented into a sequence of buffers which have 960ms length

and 480ms overlap. Each buffer consists of 47 speech frames which

have 40ms length and 20ms overlap. By performing the WPD at

the 7th scale on each speech frame, the wavelet coefficients of 128
WPD channels are extracted. Next, the thresholds related to the

noise levels are estimated based on the universal thresholds [2] and

a quantile filtering algorithm using recursive buffering. To handle

non-stationary and colored noise, the estimated thresholds are non-

linearly adaptively weighted in the time-frequency domain. Then

an optimized wavelet shrinking method is used to shrink wavelet

coefficients which are below the weighted thresholds towards zero.

Finally, the denoised speech frames are reconstructed by the wavelet

packet reconstruction (WPR) of the thresholded wavelet coefficients.

A schematic of the algorithm is shown in Fig. 1.

Fig. 1. Scheme of WPD-based noise suppression.

2.1. Wavelet shrinking and universal threshold

We consider a basically additive model of a signal s corrupted by

noise e which creates a noisy signal x:

x = s + e . (1)

Because of the linearity of the Wavelet transform, the WPD coeffi-

cients of noisy speech Xk,i at the ith frame can be expressed as the

sum of WPD coefficients of clean speech Sk,i and noise Ek,i as:

Xk,i = Sk,i + Ek,i , (2)
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where k = 2j is number of WPD channels derived by performing

full WPD at scale j, with j ∈ Z [k ∈ 2Z. A simple denoising pro-

cess is thresholding the noisy wavelet coefficients which are lower

than certain thresholds to zero (hard thresholding [3]). An enhanced

wavelet shrinking method is proposed by [4] by smoothing the hard

thresholding:

X̃k,i =

8<
:

Xk,i , if |Xk,i| > Tk,i ,
Tk,i sign(Xk,i)

µk,i

Ak,i , if |Xk,i| ≤ Tk,i ,
(3)

with Ak,i and the adaptive parameter µk,i defined as:

Ak,i = (1 + µk,i)

|Xk,i|

Tk,i − 1 , (4)

µk,i = θ
max

m
{|Xk,i[m]|}

Tk,i

, (5)

where θ is a constant factor and m is the index of the coefficients

in the WPD channels. In contrast to hard thresholding, this shrink-

ing preserves non-zero values for coefficients which are below the

thresholds. Examples of the function in (3) are given in Fig. 2.
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Fig. 2. Smoothed hard thresholding.

The universal threshold procedure in [2] which uses a robust

estimate of standard deviation is applied to estimate the thresholds

of the WPD coefficients as:

Tk,i =
1

γMAD
Median(|Xk,i|)

p
2 log NWP , (6)

where γMAD = 0.6745 and Dk,i is the WPD coefficient sequence

having length NWP in each channel for each frame.

2.2. Quantile threshold estimation of noise level

A quantile-based algorithm to estimate the threshold related to noise

level has been presented in [1]. The threshold is estimated by taking

the qth quantile over the duration of the buffer in every WPD chan-

nel. The algorithm is implemented using a recursive buffer which is

constructed from the overlapping buffers as follows:

• First, the current threshold buffer is built from universal thresholds

Tk,i which is calculated for all WPD channels of all frames in the

current buffer.

• Second, the recursive buffer is formed by merging the thresholds

Tk,i of the frames i = 24, . . . , 47 in the current threshold buffer

with the thresholds Tk,i which are selected from quantile range

q = 0.1, . . . , 0.6 of the previous sorted threshold buffer.

• Then, for each WPD channel, the thresholds in the recursive buffer

are sorted in ascending order which results in Tk,i′ , where i′ =
1, . . . , Nf is the frame index after sorting with Nf = 47. This

sorted recursive buffer is used for the next loop.

• Finally, the threshold related to the noise levels, Γk, for all frames

in the sorted recursive buffer at the kth channel is determined as

the qth quantile :

Γk = Tk,i′ |i′=�qNf � (7)

From our experiments, the quantile q = 0.2 is selected out of a

candidate range q = 0.0, 0.1, . . . , 0.6, as the value yielding the best

performance.

2.3. Nonlinearly adaptive weighting

To handle non-stationary and colored noise, the noise threshold Γk

of each frame i in each channel k is weighted as follows:

Γ̃k,i = λk,iηkΓk, (8)

where λk,i and ηk are nonlinear functions in the time-frequency and

in the frequency domain as described below. Γ̃k,i is the weighted

estimate of the noise threshold.

2.3.1. Frequency weighting

Obviously, the energy distribution of colored noise is not equal over

all frequency channels. Thus, the scale-dependent estimation of

noise level is necessary in this case. As a solution proposed in [1],

the colored noise is handled by weighting the threshold Γk with the

nonlinear parameter ηk as:

ηk0 = (10Γk)−(10Γk)a0

+ d0 , (9)

where a0 = 0.55, d0 = 0.6. The function ηk0 in Fig. 3 amplifies

strongly the threshold levels in the quantile range [0, ..., 0.3] and less

those in the remaining range. This means that more small noisy co-

efficients in high-frequency channels will be shrunk by the amplified

thresholds while the large coefficients at low-frequency channels are

only slightly impacted. This leads to low background noise while

maintaining high quality of the denoised speech signal.

In case of low-frequency colored noise, the smaller impact on

low-frequency channels results in a high level of background noise

after denoising. As reported in subjective tests [1], this can be toler-

ated in speech enhancement applications because the naturalness of

speech is maintained. However, the high background noise is sen-

sitive in speech recognition applications and may reduce the word

error rate. For this reason, we develop another weighting function

ηk1 shown as a dashed line in Fig. 3 that puts stronger weighting on

the large Γk stemming from low-frequency WPD channels:

ηk1 = (a1Γk)b1 + d1 , (10)

where a1 = 70, b1 = 0.5, d1 = 0.4 are selected manually from

our experiments to achieve high performance of ASR. Figs. 4 and

5 shows the denoising results of a recording corrupted by low-

frequency colored noise at 2dB SNR for the two different functions

ηk0 and ηk1.

I  478



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1

2

3

4

5

6

7

8

η
k0

η
k1

η
k

Γ
k

Fig. 3. Weighting on quantile thresholds in the frequency domain.
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Fig. 4. Speech waveform of (a) noisy recording, and denoised

recordings by (b) ηk0, and (c) ηk1.

2.3.2. Time adaptive weighting

The time-variant threshold dependent curve (TDC) λk,i is built to

track where the speech or noise appears along the time axis as fol-

lows:

λk,i = Tk,i
−a2 + d2 , (11)

where a2 = 0.14, d2 = 0.2 are constants, Tk,i is the universal

threshold from (6) in the current threshold buffer. Frames with

smaller thresholds Tk,i, which are assumed to hold noise, will yield

an increase of the threshold values and thus result in aggressive noise

suppression. Frames with large Tk,i, which are considered to contain

speech information, will result in a smaller threshold, to preserve

speech quality. An example of a TDC in relation to the universal

thresholds for one wavelet channel is shown in Fig. 6.

2.4. Optimal wavelet shrinking

To avoid speech distortion, especially for unvoiced consonants, the

optimal wavelet shrinking is proposed by making the factor θ in (5)
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Fig. 5. Spectrogram of (a) noisy recording, and denoised recordings

by (b) ηk0, and (c) ηk1.
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Fig. 6. Time adaptive weighting based on TDC.

adaptive for each wavelet channel:

θk,i = exp

0
@α

Γ̃k,i

max
i

{Γ̃k,i}

1
A (12)

where α = 5.8 is a slope constant. Due to the direct influence of θk,i

on µk,i, the part of function (3) (cf. also Fig. 2) for |Xk,i| smaller

than the threshold Tk,i is automatically closer to the identity func-

tion and thus preserves more coefficients for the speech frames, and

closer to the hard thresholding function to compress more noisy co-

efficients for the non-speech frames.

3. RECOGNITION EXPERIMENTS

To assess the suitability of the presented noise suppression algo-

rithms for the use in ASR systems, a number of tests were carried

out. Firstly, the algorithm was tested as a pre-processing stage to

the front-ends specified by [5] (standard MFCC) and [6] (advanced

front-end, AFE) in combination with the HTK recognizer [7] for
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the German Aurora 3 SpeechDat-Car corpus. This corpus includes

samples of series of digits recorded in a car environment under vari-

ous driving conditions (car stopped with motor running, town traffic,

driving at low speech on rough road, driving with high speed on

good road; all recorded with close talking microphone and with a

hands-free microphone). The noise environment for the SpeechDat-

Car corpus is not as adverse as the factory floor environment in the

SNOW project, however, the corpus is widely used for assessing

ASR systems and thus allows for direct comparison of noise sup-

pression algorithms, and particularly the training/test set with “high-

mismatch” (i. e., with rather clean samples used as training data and

very noisy samples as test data) should allow for a rough assessment

of how the proposed noise suppression algorithm would behave in a

more adverse environment.

Using the proposed noise suppression algorithm as a pre-

processing stage for a given ASR system, however, does not increase

the recognition rate: For the “high-mismatch” training/test set of the

German SpeechDat-Car corpus and the HTK recognizer trained with

the according front-end, the word recognition rate (WRR) is reduced

from 66.7% to 65.6% (accuracy from 63.2% to 60.4%) for the

standard MFCC front-end, and from 89.8% to 85.7% (accuracy

from 89.5% to 77.3%) for the AFE. We attribute this mainly to

the different training and test conditions, and probably to a negative

interference between the proposed noise suppression algorithm and

the denoising algorithm in the AFE.

The second test thus comprises the training of the HTK rec-

ognizer using the proposed noise suppression algorithm as a pre-

processing stage for the standard MFCC front-end, and as a replace-

ment for the Wiener filter denoising in the AFE. Here, the WRR of

66.7% using the standard MFCC front-end for training and testing

is increased to 75.3% with the proposed algorithm (accuracy from

63.2% to 73.2%), however, the WRR for the AFE of 89.8% is re-

duced to 85.2% (accuracy from 89.5% to 83.9%).

A third test was performed on a corpus set up in the scope of the

SNOW project, comprising 435 utterances (a total of 1135 words,

utterances are commands for controlling a graphical browser dis-

play) recorded by 4 female and 4 male speakers under work condi-

tions in an airplane maintenance facility. For this recognition test the

Loquendo ASR system [8] using elaborate spectral subtraction de-

noising [9] was utilized, using a grammar where all the vocabulary

words can be looped without any constraints. The proposed wavelet

noise suppression algorithm was again used as a pre-processing

stage, in addition to the denoising in the ASR front-end. Like in

the experiment with HTK, the WRR is reduced, too, from originally

83.7% to 78.4%. A summary of the test results is given in Table 1.

4. CONCLUSION AND OUTLOOK

In [1] we have shown that an elaborate WPD-based speech enhance-

ment algorithm allows for consistent attenuation of background

noise while preserving speech naturalness and intelligibility. In this

paper the algorithm has been adapted to suit the requirements of

noise suppression for the use with ASR systems. The modifications

to the algorithm allow for a more aggressive suppression of back-

ground noise compared to the previous setting [1], as exemplified in

Figs. 4 and 5.

The experiments with ASR systems show, on the one hand, that,

for the application in adverse noise environment, no improvement

in recognition rate can be achieved when the proposed algorithm is

used as a pre-processing module in addition to ASR internal noise

reduction methods without re-training. On the other hand, if the ASR

system is trained with the noise suppression algorithm, a significant

Table 1. Summary of recognition results: WRR and accuracy (Acc.)

of the proposed denoising algorithm (this) in comparison to the origi-

nal processing (orig) of [5] (MFCC), [6] (AFE), and [8] (LOQ ASR).

German SpeechDat-Car/HTK SNOW/LOQ ASR

w.o retraining with retraining w.o retraining

MFCC AFE MFCC AFE –

WRR orig 66.7% 89.8% 66.7% 89.8% 83.7%

WRR this 65.6% 85.7% 75.3% 85.2% 78.4%

Acc. orig 63.2% 89.5% 63.2% 89.5% 75.2%

Acc. this 60.4% 77.3% 73.2% 83.9% 67.1%

improvement is achieved using the ETSI 201 108 standard front-end,

and the proposed algorithm almost achieves the performance of the

noise reduction in the ETSI 202 050 advanced front-end.

Thus, this promising WPD-based algorithm can be applied for

both speech enhancement and ASR1, and should be further inves-

tigated and optimized for ASR in future research. In particular,

the combination with voice activity detection, as used in the AFE,

should be beneficial to increase accuracy (reduce the number of ‘in-

sertions’). Within the SNOW project, the aim is to fully integrate

this noise suppression algorithm with the feature extraction front-

end used in the Loquendo speech recognition system.
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