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ABSTRACT

A marginalized particle filter is proposed for performing sing-

le channel speech enhancement with a non-linear dynamic state
model. The system consists of a particle filter for tracking line

spectral pair (LSP) parameters and a Kalman filter per particle for

speech enhancement. The state model for the LSPs has been learnt

on clean speech training data. In our approach parameters and
speech samples are processed at different time scales by assum-

ing the parameters to be constant for small blocks of data. Further

enhancement is obtained by an iteration which can be applied on

these small blocks. The experiments show that similar SNR gains
are obtained as with the Kalman-EM-iterative algorithm. How-

ever better values of the noise level and the log-spectral distance

are achieved.

1. INTRODUCTION

Single-channel speech enhancement has been an area of active re-

search for a long time, with an even increased interest in recent

years due to new challenging applications in the domain of mo-
bile phones, which often operate in very adverse acoustic envi-

ronments. While algorithms employing the short-term frequency

transform of the incoming signal provide large signal-to-noise ra-

tio gains, time domain algorithms are known for delivering excel-
lent speech quality [1]. The latter approach typically builds on the

autoregressive (AR) model of speech production, from which a

state space model of the speech signal can easily be derived, mak-

ing the Kalman filter the preferred choice for time-domain speech
enhancement [2]-[5].

Since the AR model parameters are not known in advance and

change over time, they have to be estimated alongside the speech

enhancement. Gannot has developed the Kalman-EM-iterative
(KEMI) algorithm, a batch algorithm to iteratively estimate the

parameters of the state space model and enhance the noisy speech

signal [3]. He also proposed a sequential algorithm which almost

achieves the performance of the KEMI algorithm. Recursive se-

quential algorithms have also been proposed in [4] and [5] to esti-
mate the AR parameters.

Recently, attempts have been reported to explicitly model the

evolvement of the AR parameters over time by a state space model.

The state vector then consists of both the recent clean speech sam-
ples and the AR parameters. The resulting non-linear estimation

problem can be approached by applying a linearisation, e.g. the

analytical linearisation of an extended Kalman filter or the sta-

tistical linearisation of an unscented Kalman filter [6] with, how-

ever, mixed results sofar. Alternatively, particle filters may be used

[7, 8]. These sequential Monte Carlo methods have already been

used successfully in many non-linear tracking applications [9, 10].
While in [7] the enhancement of individual phoneme transitions is

considered by employing a random walk model for the time vary-

ing AR parameters, a model based on partial correlation (PAR-

COR) coefficients is developed in [8] which is applied to short sec-
tions of both speech and music data. Particle filters have also been

employed for speech feature enhancement for subsequent speech

recognition [11], [12].

Our approach is based on the work of [7] and [8] in that the

same Rao-Blackwellized particle filtering structure is used: tak-
ing advantage of the conditional linearity of parts of the state

model sampling in a high-dimensional state space can be avoided.

We, however, operated the particle filter on a block of input data,

which, alongside computational advantages, resulted in better en-
hancement.

While the AR model is the parametric representation of speech

that is most commonly used in the context of speech enhancement

[2] - [7], we employed Line Spectral Pair (LSP) parameters. They

showed superior predictive power when used in state space models
learnt from clean speech training data.

This paper is organized as follows. In the next Section we de-

scribe the Rao-Blackwellized particle filter introduced in [7] and

[8]. In Section 3 we modify the particle filter to operate on blocks
of input samples. In Section 4 we motivate the use of LSPs, esti-

mate a corresponding dynamic state space model in Section 5 and

outline our proposed speech enhancement algorithm in Section 6.

Then we present experimental results in Section 7 and finish with
some conclusions.

2. NON-LINEAR DYNAMIC STATE MODEL

We are concerned with estimating the clean speech signal s(k)
from the noisy observations

y(k) = s(k) +
p

gv(k)v(k), k = 1, 2, . . . (1)

where v(k) denotes normalized (zero mean, unit variance) addi-

tive Gaussian noise, which is assumed to be white for simplicity.

An extension to colored noise is possible e.g. by following the

approach described in [3].
p

gv(k) is the gain of the noise.

Using the source filter model of speech production, the clean
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speech signal s(k) can be written as follows

s(k) =

pX
j=1

aj(k)s(k − j) +
p

gs(k)ws(k). (2)

Here aj(k), j = 1, . . . , p are the time-varying autoregressive

(AR) parameters, ws(k) represents the normalized white Gaussian

excitation noise and
p

gs(k) is the gain of the noise. Assuming

that the AR coefficients and the noise level are known, a linear state

space model with state vector s(k) = (s(k), . . . , s(k − p + 1))T

and a state transition matrix which contains the AR coefficients
can easily be derived from eq. (2) [3].

In [7] the state-space model was extended so that the evolve-

ment of the AR parameters over time was also considered. Now

the state vector

x(k) = (sT (k), θ
T (k))T

(3)

consists of the signal state, i.e. the recent clean speech samples
s(k), and the parameter state θ(k) = (aT (k), gs(k), gv(k))T ,

i.e. the AR coefficients a(k) = (a1(k), . . . , ap(k))T and the

time-varying gain factors. This state space model is in fact non-

linear, and sequential Monte Carlo methods can be used to esti-
mate the posterior probability of the state vector, given the obser-

vations (1). Using the aforementioned conditional linearity of the

model of s(k) given θ(k), a more efficient combined particle and

Kalman filter can be obtained by Rao-Blackwellization [10]. The
resulting system consists of a particle filter for the subvector θ(k)
and a Kalman filter for estimating the corresponding signal states

s
(i)(k) for each particle θ

(i)(k), i = 1, . . . , Np (Np: number of

particles); see [7] and [8] for details.

3. BATCH PROCESSING

In this paper we consider a slightly more general model, which

will reveal an interesting interpretation of the resulting enhance-

ment system. Since the AR coefficients may change on a different,

typically slower time scale than the speech samples and since they

may be easier estimated on blocks of samples than on a single sam-
ple, we use a piecewise constant model for the AR coefficients:

a(mM + l) is assumed to be constant during a block of M sam-

ples, i.e. during l = 0, 1, . . . , M − 1, and to change between

subsequent blocks:

a(m + 1) = Fa a(m) + Ga wa(m), (4)

where m denotes the block counter, and wa(m) is white Gaussian

noise with E[waw
T
a ] = Ip, Ip being the (p × p) identity matrix.

The matrices Fa and Ga are the state transition and input matrix,

respectively, which we learnt from clean speech training data, see
Section 4.

The measurement vector for the state estimation of the AR co-

efficients consists of the M noisy speech samples y(mM + l),

l = 0, . . . , M − 1. Since all noise terms are assumed to be Gaus-
sian, the likelihood function of the observations y(mM + l), l =
0, . . . , M−1, given a hypothesized AR vector, i.e. given a particle

a
(i)(m), and given the estimates ŝ

(i)(mM+l), l = 0, . . . , M−1,

of the clean speech provided by the i-th Kalman filter, is Gaussian.

The exponent of this Gaussian can be approximately written as

1

2

M−1X
l=0

“
y(mM + l) − (a(i))T (m)ŝ(i)(mM + l − 1)

”2

(Σ
(i)

y|Y
(mM + l − 1) + gv)−1

(5)

where subsequent noisy speech samples are considered condition-

ally independent. Σ
(i)
y|Y denotes the covariance matrix of the pre-

dicted speech sample which is provided by the i-th Kalman filter.

Finding the value of a(m), which minimizes this term (and

thus maximizes the likelihood), greatly resembles block-oriented

LPC analysis [14], where the next sample (here: y(mM + l)) is

to be predicted from previous ones (here: ŝ
(i)(mM + l − 1)).

The optimal predictor for this task is exactly the value of a(m)
which minimizes eq. (5). A key advantage of the particle filter is

that the speech samples need not be reduced to a single estimate

of a(m), before tracking is done. Hypothesized values of the pa-

rameter state variable, i.e. the particles a
(i)(m), are individually

assessed by the likelihood function, whose exponent is given by
eq. (5), and tracked over time. An estimate of the state variable is

then obtained as a weighted sum of particles. This could be called

a ”track before detect” strategy.

4. LSP VS. AR COEFFICIENTS

The well-known all-pole source-filter model of speech production

given in eq. (2) makes a parametric representation of speech by AR

parameters the natural choice in the context of Kalman filter based
speech enhancement. However, the estimation of these linear pre-

diction coefficients is known to be susceptible to noise. In this

section we therefore explore the use of other parametric descrip-

tions. In informal experiments we found that among the various
parametric descriptions of speech line spectral pairs (LSP) seemed

to be the most promising candidate.

The LSP coefficients a
(lsp)(m) are an equivalent represen-

tation of the AR coefficients a
(ar)(m) where the poles of the

transfer function 1/A(z) in the model of speech generation are

mapped onto the unit circle using two auxiliary polynomials P (z)
and Q(z). The auxiliary polynomials are calculated via the re-

lations P (z) = A(z) + z−(p+1)A(z−1) and Q(z) = A(z) −

z−(p+1)A(z−1), where A(z) is the z-transform of the AR coeffi-

cients. The LSPs are selected to be the phases φi, i = 1, . . . , p,
where ejφi , i = 1, . . . , p are roots of P (z) or Q(z) [13].

The Frobenius norm ‖Ga‖F of the input matrix, i.e. the trace

of GaG
T
a , is a measure for the predictive power of the state space

model, see eq. (7) further below. After learning state space models

for AR and LSP coefficients from the same training data, we found

that ‖G
(ar)
a ‖F = 0.21 and ‖G

(lsp)
a ‖F = 0.08, which demon-

strates the higher predictive power of the LSP state space model.

5. STATE MODEL ESTIMATION

The matrices F
(lsp)
a and G

(lsp)
a of the state space model of LSP

coefficients are estimated prior to speech enhancement as follows.
First, sequences a

(ar)(m), m = 1, 2, . . . of AR coefficients are

calculated from blocks of clean speech data using the autocorre-

lation method. From these, sequences a
(lsp)(m), m = 1, 2, . . .

of LSP coefficients are computed [14]. The entries f
(lsp)
ij of the

state transition matrix F
(lsp)
a are determined by minimizing the

expected values E[(a
(lsp)
i (m) −

Pp

j=1 f
(lsp)
ij a

(lsp)
j (m − 1))2],

i = 1, . . . , p. Taking partial derivatives w.r.t. the unknowns the
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following system of equations results:

Pa = RaFa

with

Pa =

2
64

E[a1(m − 1)a1(m)] . . . E[a1(m − 1)ap(m)]
...

. . .
...

E[ap(m − 1)a1(m)] . . . E[ap(m − 1)ap(m)]

3
75

and

Ra =

2
64

E[a2
1(m − 1)] . . . E[a1ap(m − 1)]

...
. . .

...

E[apa1(m − 1)] . . . E[a2
p(m − 1)]

3
75 ,

(6)

where we have omitted the superscript for ease of notation. From

this Fa can be obtained.

The matrix Ga can be determined with the relation

GaG
T
a = E[(ak − Faak−1)(ak − Faak−1)

T ] (7)

and subsequent Cholesky factorisation.

6. ITERATIVE SPEECH ENHANCEMENT

A Sampling-Importance-Resampling (SIR) particle filter [10] was

used for estimating the trajectory of the LSP coefficients.

Note that the Np Kalman filters operate on a state transition

matrix containing the AR coefficients as described in Section 2.

Therefore the LSP coefficients have to be converted to AR co-

efficients, which is done as follows: the components of the p-
dimensional particle (a(lsp))(i) are the phases φ1, . . . , φp. From

these the roots of P (z) and Q(z) are obtained, using the unique

properties of the roots of P (z) and Q(z). From these in turn the

AR coefficients are computed.

In the following we sketch the operations to be conducted on

one block of noisy input speech data.

1. Draw Np samples from the Gaussian

p(a(lsp)(m)|a(lsp)(m − 1)).

2. For each sample (a(lsp))(i)(m):

a) Compute AR coeff. (a(ar))(i)(m) and plug them into

the system matrices of the i-th Kalman filter.

b) Perform Kalman filtering of the input data y(mM +
l), l = 0, . . . , M − 1 to produce estimates

ŝ(i)(mM + l), l = 0, . . . , M −1 of the clean speech

and correspondig prediction error covariances.

3. Compute weights w(i)(m), i = 1, . . . , Np, which are pro-

portional to the Gaussian whose exponent is given in (5).

4. Draw Np samples with replacement from the set

{(a(lsp))(i)(m), i = 1, . . . , Np} to ensure particle diver-
sity.

5. Set m := m + 1 and go to 1.

An overall estimate of clean speech can be obtained as

ŝ(mM+l) =

NpX
i=1

w(i)(m)ŝ(i)(mM+l); l = 0, . . . , M−1. (8)

No voice activity detection (VAD) is needed in this proposed

speech enhancement system. The particles are initialized with the

overall mean vector of the LSP coefficients obtained from the clean
speech training data. Unlike [7] the gain values gv and gs are not

considered as being part of the state vector of the particle filter

but as parameters which are estimated separately from the noisy

speech signal y(k). Since we assumed that the noise is station-
ary, gv is actually only estimated once at the beginning of a data

file before the onset of speech and this value is then kept con-

stant from that on. An estimate ĝ
(init)
s for the gain value gs is

calculated independently for blocks of length 128 using the ap-

proach proposed by [3]. In [3] this initial estimate is improved
using the covariance matrix of the filtered state vector ŝ(k). How-

ever this approach only works for large blocks and is therefore not

applicable for the small block sizes considered here, see Section

7. We therefore keep these initial estimates from enclosing frames
of length 128, but obtain improved speech enhancement by the

following iteration performed on blocks of size M : The Kalman

filtering operation step 2.b) and the weighting computation step

3) in the proposed algorithm are repeated, where the noisy input
speech is replaced by the overall estimates of the clean speech (8)

obtained in the previous iteration.

7. EXPERIMENTAL RESULTS

We conducted experiments on sentences of the Wallstreet Journal

corpus (WSJ) to which white Gaussian noise was artificially added

at different SNRs.

In a first set of experiments parameters of the proposed
Particle-Kalman speech enhancement system were determined.

The number of modelled coefficients was fixed to the value p = 3.

In informal experiments we observed that for higher model orders

the SNR gain was smaller due to the difficulties in reliably track-
ing all model parameters. Tab. 1 shows the SNR gain as a function

of the block length M for three different input SNR values. The

value M = 16 was chosen for the subsequent experiments as a

compromise between large blocks where the particle filter is un-
able to track fast changes of the parameter vector, e.g. at phoneme

transitions, and small blocks where the measurements are less sta-

ble. Compared with M = 1 an SNR gain of at least 0.5dB is

M 1 2 4 8 16 32 64 128 256
3dB 3.2 3.4 3.8 3.9 4.1 4.1 4.1 4.0 3.9

5dB 3.3 3.6 3.8 3.9 4.0 4.0 4.0 3.7 3.6
10dB 2.5 2.7 2.9 3.0 3.0 3.1 3.1 3.0 2.8

Table 1. SNR gains with distinct input SNRs and block lengths M

achieved with M = 16. Also the runtime is reduced with larger

blocks, because the conversion between LSP and LPC coefficients,

which costs about half the time required to process a sample, must
only be performed once per block.

In the next set of experiments the dependence of the SNR gain on

the number of particles was determined, see Tab. 2. The value

Np = 100 was selected which led to almost the same SNR gain as
Np = 500.

Next the proposed Particle-Kalman algorithm (denoted PK2 in

the following) with the afore determined parameters and one iter-

ation was compared with Gannot’s famous Kalman-EM-iterative
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Np 10 25 50 100 200 500

3dB 2.9 3.7 3.9 4.0 4.0 4.1
5dB 2.4 3.5 3.6 3.7 3.7 3.8

10dB 2.0 2.8 2.8 3.0 3.0 3.0

Table 2. SNR gains with distinct input SNRs and particles Np

algorithm (KEMI) [3] and an algorithm very similar to Vermaak’s
approach (PK) [7], which we had used as a starting point for our

research. The KEMI algorithm was applied with five iterations,

non-overlapping blocks of size M = 128, model order p = 10
and noise modelled to be additive, white and gaussian. In PK the
block length is selected to be M = 1 and the model order is p = 3.

We used Np = 100 particles, a random walk state model of AR

coefficients and no iteration. Unlike [7] in PK the gain factor gs is

separated from the state vector and calculated as described in [3].
For the evaluation we used four different quality measures pro-

posed by Gannot [3] [15] and averaged the results over 20 sen-

tences (Fig. 1).
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Fig. 1. Figures-of-merit for 20 WSJ sentences with Gaussian noise

First the output SNRs [15] of the considered algorithms were

calculated at several input SNRs. For small input SNRs PK2

achieves slightly higher SNR gains than KEMI while for high in-

put SNRs KEMI leads to slightly higher gains. This result may be
explained by the fact that the AR parameters can be determined

very well from an almost clean speech signal, while for low input

SNRs the detection of the AR parameters is not very reliable and a

particle filter tracking can be helpful. In doing so it must be taken
into account that for KEMI the results can be improved for SNRs

less than 5dB by using Higher Order Statistics for the initial pa-

rameter estimation, which we, however, did not consider here.

The Segmental SNR [3], which is calculated during active speaker

periods, leads to similar results, while the noise level in speech
pauses [15] is lower with PK2. Since the SNR gain is not very cor-

relative with speech quality, in [15] Gannot proposed to use the log

spectral distance (LSD), which is better correlated with the mean

opinion score. In terms of the LSD distance, which is calculated
during speech periods, PK2 yields better results than KEMI. The

algorithm PK, which has been used as starting point for the devel-

opment of PK2, yields for the quality measures and input SNRs

considered here worse results than PK2 and KEMI.

8. CONCLUSIONS

In this paper we have extended the marginalized particle filter pre-

sented in [7] to iterative block processing and employed a state

space model of LSP parameters which has been learnt from train-
ing data. The approach was applied to the enhancement of noisy

sentences rather than single phoneme transitions. The SNR gains

achieved were comparable to those obtained by the Kalman-EM-

iterative algorithm, while better values of the noise level and the
log-spectral distortion are achieved where the latter measure is

known to be well correlated with perceptual speech quality. This

improvement, however, comes at significantly larger computa-

tional complexity.
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