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ABSTRACT

To enhance the noisy speech signal, a perceptual weight-

ing based Kalman filtering is investigated. Our study is to

seek a high perceptual quality of speech enhancement system

which optimizes the trade-off between the speech distortion

and noise reduction. Using perceptual weighting to replace

the masking threshold avoids the frequency domain complex-

ity, it is suitable for time domain Kalman filtering to estimate

the state-space vector in only time domain. Through many

simulations, it is demonstrated that the proposed perceptual

Kalman filtering outperforms the conventional Kalman filter-

ing.

1. INTRODUCTION

Despite the wide variety of theoretically and relatively ef-

fective techniques, the problem of single channel speech en-

hancement still poses a challenge to the area of speech signal

processing. Removing various types of noise is difficult due

to the random nature of the noise and the inherent complexi-

ties of speech.

In speech enhancement area, the advantages of Kalman

filtering, as compared to spectral domain processing such as

spectral subtraction and MMSE spectral suppression, are that

it can overcome the musical tone problem and achieve quite

good speech quality to reduce the processing distortion to

speech signal. Kalman filtering based speech enhancement

not only exploits the statistical characteristics of signal and

noise, but also utilizes the well-known speech production model,

i.e., autoregressive (AR) model, which has been proven to be

effective for modelling the human speech production system

[1].

In Kalman filtering speech enhancement [2], one of ways

to further improve the speech quality is to incorporate the per-

ceptual properties. In [3], the time domain Kalman filtering

method is extended to calculating the noise masking threshold

through the Fourier transform, followed by the inverse Fourier

transform with re-estimation of the speech signal based on

the masking threshold. In [4], the enhanced speech from a

Kalman filter is further processed by a masking-based speech

enhancement system implemented in the frequency domain.

However, it does not help to preserve weak spectral compo-

nents which might have already been removed by the time

domain Kalman filtering. In [5], the masking threshold is in-

corporated into Kalman filtering speech enhancement through

subband analysis. In fact, the aim of the masking-based speech

enhancement is to reduce the perceptual effect of the noise.

It can be explained that the masking-based methods are to

shape the noise spectrum with a criterion that leads the resid-

ual noise falls below the masking threshold. In [6], a per-

ceptual weighting technique used in the speech coding [7] is

incorporated into the subspace-based speech enhancement al-

gorithm. In [8], the perceptual weighting technique is applied

into the Kalman filtering speech enhancement. The speech

signal itself, however, is also shaped by perceptual weighting

filter; it causes an additional distortion to the speech signal

during Kalman filtering.

Actually, as the Kalman filtering and AR model are pro-

cessed in the time domain, the introduction of the frequency

domain masking threshold into the time domain to meet the

requirement of Kalman filtering processing is quite difficult.

In this paper, in place of masking threshold, we propose a

new method for the application of the perceptual weighting

technique into time domain Kalman filtering for speech en-

hancement. Experiments indicate that our proposed estimator

has better performance in terms of many objective measure-

ments as compared to conventional Kalman filtering speech

enhancement method. This paper is organized as follows.

We introduce the Kalman filtering for speech enhancement

in Section 2. In Section 3, the perceptual weighting-based

Kalman filtering method is proposed. In Section 4, we show

the simulation results in terms of objective assessments. Sec-

tion 5 gives the conclusion and discussion for this paper.

2. KALMAN FILTER FOR SPEECH
ENHANCEMENT

Consider the following model for noisy speech

x(n) = s(n) + v(n), n = 1, 2, ... (1)

where x(n), s(n) and v(n) denote the discrete time samples

of noisy speech, clean speech and noise respectively.

The clean speech signal is modeled as an AR process, and

approximated as the output of an all-pole linear system driven

by an excitation signal, w(n), which is assumed to be a zero-

mean white Gaussian process with variance σ2
w, i.e.,

s(n) =
p∑

i=1

ais(n − i) + w(n). (2)
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The noise is presumed to be wide sense stationary and col-

ored. It is adequately modelled by using the AR process [2],

i.e.,

v(n) =
q∑

i=1

biv(n − i) + u(n) (3)

where u(n) is a white Gaussian process with variance σ2
u.

Let s(n) = [s(n − p + 1) ... s(n − 1) s(n)]T , v(n) =
[v(n−q+1) ... v(n−1) v(n)]T , and the AR parameters

a(n) = [ap ... a2 a1]T , b = [bq ... b2 b1]T . We

reformulate Eqs. (1)-(3) in the form of Kalman process and

measurement equations in state space domain as follows

s̄(n) = F̄s̄(n − 1) + ḡw̄(n) (4)

x(n) = C̄T s̄(n) (5)

where

s̄(n) =
[

s(n)
v(n)

]
, w̄(n) =

[
w(n)
u(n)

]
(6)

F̄ =
[

F 0
0 Fv

]
, ḡ =

[
g 0
0 gv

]
, C̄ =

[
C
Cv

]
(7)

with

F =

⎡
⎢⎢⎢⎣

0 1 . . . 0
...

...
. . .

...

0 0 . . . 1
ap ap−1 . . . a1

⎤
⎥⎥⎥⎦

p×p

, g = C =

⎡
⎢⎢⎢⎣

0
...

0
1

⎤
⎥⎥⎥⎦

p×1

(8)

Fv =

⎡
⎢⎢⎢⎣

0 1 . . . 0
...

...
. . .

...

0 0 . . . 1
bq bq−1 . . . b1

⎤
⎥⎥⎥⎦

q×q

, gv = Cv =

⎡
⎢⎢⎢⎣

0
...

0
1

⎤
⎥⎥⎥⎦

q×1

.

(9)

According to Kalman filtering theory, the estimation of

state vector s(n) can be obtained by the following recursive

equations

ˆ̄s(n|xn) = ˆ̄s(n|xn−1) + G(n)[x(n) − C̄T ˆ̄s(n|xn−1)] (10)

ˆ̄s(n|xn−1) = F̄ˆ̄s(n − 1|xn−1) (11)

K̄(n) = [I − G(n)C̄T ]K̄(n, n − 1) (12)

where

G(n) = K̄(n, n − 1)C̄[C̄T K̄(n, n − 1)C̄]−1 (13)

K̄(n, n − 1) = F̄K̄(n − 1)F̄T + Q̄. (14)

The estimate of the speech signal is the output of Kalman

filter, i.e.,

ŝ(n) = CT
1
ˆ̄s(n|xn), C1 = [CT 0 ... 0︸ ︷︷ ︸

q

]T (15)

where ŝ(n) is the estimate of s(n), G(n) is the Kalman gain,

K̄(n, n − 1) = E{[̄s(n) − ˆ̄s(n|xn−1)][̄s(n) − ˆ̄s(n|xn−1)]T } is

the predicted state-error correlation matrix. Q̄ is defined as

Q̄ = ḡE[w̄(n)w̄(n)T ]ḡT , which is a sparse matrix with only

two nonzero elements; they are Q̄(p, p) = σ2
w and Q̄(p +

q, p + q) = σ2
u.

3. PERCEPTUAL SHAPING OF NOISE SPECTRUM
FOR KALMAN FILTERING BASED SPEECH

ENHANCEMENT

It is known that the human auditory system cannot perceive

the noise within the higher-energy regions of the spectrum of

a short-term speech signal, where the noise masking threshold

is higher than the power spectral density of noise.

In lossy speech coding, many speech coders utility the

perceptual properties of the human auditory system. Besides

the masking threshold, the perceptually weighting criterion

has been applied into the coding system [7]. The excitation

signal is found by minimizing the weighted mean-square er-

ror over a short-term frame, where the error signal is obtained

by filtering the difference between the original and the recon-

structed signals through a weighting filter W (z). The per-

ceptually weighting technique trends to shape the spectra of

quantization error and to limit them to be inaudible for each

of the spectral regions and assures to minimize the percep-

tual noise caused by speech quantization while increasing the

coding rate. The spectral envelop of the error can be shaped

by using a suitable perceptual filter below [1]

W (z) =
Φ(z/γ1)
Φ(z/γ2)

=
1 − ∑p

j=1 ajγ
j
1z

−j

1 − ∑p
j=1 ajγ

j
2z

−j
(16)

where Φ(z) is the linear predictive coding (LPC) polynomial,

aj is the AR coefficient of a short-term speech signal, γ1 and

γ2 (0 ≤ γ2 ≤ γ1 ≤ 1) are parameters that control the energy of

the error in the formant regions and p is the prediction order

of the speech AR model. Fig. 1 1 gives an example to show

the frequency response of the perceptual weighting filter for a

speech segment (32 ms) with different settings of the γ1 and

γ2.

As like conventional Kalman filtering, we have to esti-

mate the AR coefficients for both speech and noise models.

The time-varying parameters a = [ap ... a2 a1]T can be

computed according to the Levison-Durbin algorithm. Sub-

sequently, the variance of the excitation of the speech model,

σ2
w, can be computed by

σ2
w = E

{|s(n) −
p∑

i=1

a∗
i (n)s(n − i)|2}

= Rss(0) − 2Re
{ p∑

i=1

a∗
i Rss(i)

}
+

p∑
i=1

p∑
j=1

a∗
i ajRss(i − j)

(17)

here Rss denotes the autocorrelation of the speech signal.

Based on the AR model of the (pre-estimated) speech sig-

nal, we shape the spectrum of noise by applying the percep-

tual weighting filter in the time domain, so that a perceptually

1In this figure, the dB number given to the perceptual weighting filtering

is the relative values as for reference only to show the spectral envelopes in

contrast with the signal spectral envelop.
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Fig. 1. The spectral amplitude of a segment of a speech signal, its

LPC spectral envelop with p = 10, and the frequency response of

the corresponding perceptual weight filter with γ1 = 1, γ2 = 0.7
and γ1 = 1, γ2 = 0.9 respectively.

shaped noise AR model is estimated, we have

v(n) =
p∑

k=1

akγk
2 v(n−k)+vo(n)−

p∑
k=1

akγk
1 vo(n−k) (18)

where vo(n) denotes the original estimated noise signal, v(n)
is the shaped noise via the perceptual weighting filter.

Using Kalman filtering to estimate the speech signal, gen-

erally we have to estimate the AR parameters of noise sig-

nal. In contrary with the conventional colored noise model

Kalman filtering where AR parameters of noise signal is di-

rectly obtained from the estimated noise signal, we propose

that the AR parameters of the noise signal 2 is obtained from

the shaped noise signal v(n), which is the modified version

of noise by applying the perceptual weighting filter to the

original estimated noise signal, vo(n). In other words, b =
[bq ... b2 b1]T are computed according to the Levison-

Durbin algorithm from the shaped noise v(n), and σ2
u is ob-

tained as follows

σ2
u = E

{|v(n) −
q∑

i=1

b∗i (n)v(n − i)|2}

= Rnn(0) − 2Re
{ q∑

i=1

b∗i Rnn(i)
}

+
q∑

i=1

q∑
j=1

b∗i bjRnn(i − j)

(19)

where Rnn represents the autocorrelation of the perceptually

shaped noise. Fig. 2 describes the procedure of our proposed

perceptual Kalman filtering speech enhancement system.

2White noise can be considered as a special case of the colored noise

model. In general, even if the original noise is white, the shaped noise be-

comes colored.
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Fig. 2. The flow chart of the Kalman filtering speech enhancement

system with the perceptual noise shaping.

4. PERFORMANCE EVALUATION

In the simulation, we use twenty speech utterances from the

TIMIT database for the evaluation. Half of the utterances are

produced by male speakers and half by female. The effective-

ness of the enhancement algorithms is evaluated at the sam-

pling rate of 8 kHz which is down-sampled from 16 kHz after

pre-filtering.

For 8 kHz sampling rate, the AR order of speech model

is set to p = 10. In order to accurately represent the shaped

noise spectral envelop, we select q = 5 for noise AR order.

We use 32 ms (256 samples for 8kHz sampling rate) for auto-

correlation computation. The current time step locates at the

central point of the 32 ms range. For each 5 ms, the AR co-

efficients a and b are computed through the Levinson-Durbin

algorithm. For each time step of the Kalman filtering, σ2
w and

σ2
u are updated once. Consequently the total time delay of the

Kalman filtering system is 16 ms.

For the sake of predicting the best and worst performance

of our proposed method, we consider two cases to estimate

the AR parameters of speech signal. One extreme case is

that the time-varying AR parameters of the speech model are

estimated using the clean speech, we call it as the “Ideal-

AR” case. Another extreme case is that the AR parameters

of speech signal are estimated using the noisy speech, which

we shall call the “Noisy-AR” case. Table 1 shows the perfor-

mances of the conventional Kalman filtering and the proposed

perceptual Kalman filtering with γ1 = 0.9 and (1) PerKal1:

γ2 = 0.9, (2) PerKal2: γ2 = 0.8, (3) PerKal3: γ2 = 0.7, in

terms of segmental SNR (seg.SNR), Itakura-Saito (IS) distor-

tion and modified Bark spectral distortion (MBSD) measures,

where the speech utterances are contaminated by white noise
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Table 1. Comparison of the performances between the conventional

Kalman filtering and the proposed perceptual Kalman filtering, where the

input seg.SNR is -5 dB.

Objective

Methods Measurements

seg.SNR IS MBSD

StdKal 5.65 0.46 0.89

Ideal PerKal1 5.62 0.33 0.62

-AR PerKal2 5.57 0.30 0.59

PerKal3 5.50 0.29 0.57
StdKal -1.96 0.68 2.65

Noisy PerKal1 -1.65 0.54 2.20

-AR PerKal2 -1.60 0.53 2.16

PerKal3 -1.57 0.52 2.14

Table 2. Comparison of the performances between the conventional

Kalman filtering and the proposed perceptual Kalman filtering, where the

input seg.SNR is 0 dB.

Objective

Methods Measurements

seg.SNR IS MBSD

StdKal 8.20 0.26 0.52

Ideal PerKal1 8.16 0.21 0.42

-AR PerKal2 8.11 0.19 0.39

PerKal3 8.04 0.18 0.36
StdKal 2.06 0.37 1.50

Noisy PerKal1 2.71 0.29 1.26

-AR PerKal2 2.75 0.28 1.24

PerKal3 2.78 0.27 1.22

with the average seg.SNR = -5 dB, IS = 0.84 and MBSD =

4.00. Table 2 is under the same simulation conditions as Ta-

ble 1 except the input noisy speech utterances are with the

average seg.SNR = 0 dB, IS = 0.45 and MBSD = 2.26.

From the simulation results 3, we can see that the per-

formance of the proposed method is generally better than the

conventional Kalman filtering except the seg.SNR measure in

the Ideal-AR case; and the performance is better for the pro-

posed method when the weighting degree increases with γ2

value from 0.9 to 0.7.

5. CONCLUSION AND DISCUSSION

In this paper, we propose a new method for the application of

the perceptual weighting filtering into the Kalman filtering-

based speech enhancement. Through computer simulations,

we investigate the degrees of the effect of the perceptual weight-

ing filtering along with the weighting factors (γ1 and γ2) as

3The value with bold style represents the best one.

well as the comparison with the conventional Kalman filter-

ing, in terms of seg.SNR, IS distortion and MBSD measures.

The simulation results show that the proposed method is gen-

erally effective and improved over the conventional Kalman

filtering based speech enhancement method. Although the re-

sults provided here are only for the case of white noise, in our

simulation, the similar findings are also suitable for the cases

of F-16 cockpit noise and Volvo car interior noise.

Here we compute the AR parameters in the two extreme

cases (i.e., Ideal-AR and Noisy-AR) for the Kalman filtering

method. One may evaluate the performances for the various

iterations of the enhanced speech obtained by the Kalman fil-

tering, i.e., the enhanced speech signal can be obtained through

Kalman filtering by using the AR parameters obtained from

the estimated speech signal in the previous iteration of the

Kalman filtering, while the original noisy signal is always

considered as input signal to the Kalman filter.
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