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ABSTRACT

Most DFT domain based enhancement methods rely on stochastic

models to derive clean speech estimators. In this paper we investi-

gate the use of a deterministic speech model and present an MMSE

estimator under a combined stochastic-deterministic speech model.

Experimental results show an increase in segmental SNR of 1.18

dB, compared to the use of a stochastic model alone. Furthermore,

PESQ evaluations lead to an increase of 0.3 on the MOS scale. Lis-

tening tests show a preference for the proposed MMSE estimator

under combined stochastic-deterministic speech model.

1. INTRODUCTION

Voice communication systems are often designed for processing of

noise free speech. However, speech signals used as an input to these

systems are often degraded by acoustical noise. Single microphone

speech enhancement methods can be used to reduce the noise level

in the noisy signals before they are processed by a voice communi-

cation system.

Many such algorithms work in the discrete Fourier transform

(DFT) domain, where relatively good quality can be obtained with

relatively low computational complexity. Here clean speech DFT co-

efficients are estimated using a criterion like minimum mean square

error (MMSE) [1]. The main focus in DFT domain speech enhance-

ment has been on the derivation of estimators relying completely

on a stochastic model for the clean speech DFT coefficients. In

practice, speech DFT coefficients have been assumed Gaussian dis-

tributed [1], and more recently estimators have been derived which

assume Laplacian and Gamma distributions [2].

Although most DFT domain enhancement algorithms rely on

stochastic models, it is known that certain speech sounds (e.g. vow-

els) can be very well modelled with a linear combination of sinu-

soidal functions with constant frequency and amplitude [3, Ch. 4].

With this signal representation, the sequence of DFT coefficients

seen across one particular frequency bin constitutes a completely

deterministic time-series. In [4] a maximum likelihood based spec-

tral amplitude estimator was derived under a deterministic speech

model. Here, clean speech DFT coefficients are characterized by de-

terministic, but unknown, amplitude and phase values, while noise

DFT coefficients are assumed to follow a zero mean Gaussian pdf.

However, here it was assumed that speech always has a determinis-

tic character; an assumption which is obviously less appropriate for

noise-like speech sounds such as /s/, /f/, etc.
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We propose in this paper to use a speech model where clean

speech DFT coefficients are represented by a mixture between a

stochastic and a deterministic model. Using this combined stochastic-

deterministic (SD) model, we derive an MMSE clean speech estima-

tor under speech presence uncertainty similar to [1, 4]. By doing so,

we exploit the idea that certain speech DFT coefficients can be bet-

ter modelled using a stochastic representation while others may be

better represented with a deterministic one.

2. DETERMINISTIC AND STOCHASTIC SPEECH MODEL

In this section we consider the individual stochastic and determin-

istic speech models and their MMSE estimators. We assume the

noise process to be additive, i.e. Y (k, i) = X(k, i) + N(k, i) with

Y (k, i), X(k, i) and N(k, i) the noisy speech, clean speech and

noise DFT coefficient for frequency bin k and time frame i. Fur-

ther we assume that X(k, i) and N(k, i) are uncorrelated and that

N(k, i) has a zero-mean Gaussian distribution.

2.1. The Stochastic Model

Although different stochastic models have been proposed for speech

DFT coefficients [2], we assume here that under the stochastic speech

model, speech DFT coefficients have a Gaussian distribution. How-

ever, we notice that the presented framework is general and can also

be extended to other distributions. Under the Gaussian distribu-

tion, the noisy speech DFT coefficients follow a zero-mean complex

Gaussian distribution

f(Y (k, i)) =
1

πσy
2(k, i)

exp

{
−|Y (k, i)|2

σy
2(k, i)

}
, (1)

where σ2
y(k, i) is the variance of the noisy DFT coefficient Y (k, i)

which equals the sum of the clean speech and noise variance, that is

σ2
y(k, i) = σ2

x(k, i) + σ2
n(k, i). The MMSE estimator is then given

by the conditional mean estimator, known as the Wiener filter,

X̂(k, i) = E [X(k, i)|Y (k, i)] =
ξ(k, i)

1 + ξ(k, i)
Y (k, i). (2)

Here, ξ(k, i) =
σ2

x(k,i)

σ2
n(k,i)

which is known as the a priori SNR.

2.2. The Deterministic Model

The noisy DFT Y (k, i) under the deterministic speech model is a

sum of a deterministic variable X(k, i) and a (zero-mean) Gaussian
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distributed variable N(k, i). Therefore, Y (k, i) has a non-zero mean

Gaussian distribution,

f(Y (k, i)) =
1

πσn
2(k, i)

exp

{
−|Y (k, i) − E[Y (k, i)]|2

σn
2(k, i)

}
,

(3)

with E[Y (k, i)] = X(k, i). Apart from a non-zero mean, we note

that the variance of Y (k, i) under the deterministic model may be

significantly smaller than that of Y (k, i) under a stochastic model.

Under the deterministic speech model, the clean speech DFT co-

efficients are assumed to be deterministic, but unknown. This means

that f(X(k, i)) = δ(X(k, i)−X ′(k, i)) with X ′(k, i) the value of

the deterministic clean speech DFT coefficient itself and where δ(·)
is a delta function. Since X ′(k, i) is unknown we use

X̂(k, i) = X ′(k, i) = E [Y (k, i)] , (4)

to compute its value from the noisy DFT coefficients.

An example of a deterministic model is one were we assume that

the clean speech signal can be represented by a sum of P sinusoids

with constant amplitude and frequency, that is,

x(m) =
P∑

p=1

apejφpejνpm,

where m is the time sample index, ap the amplitude, φp the phase

and νp the frequency of component p. Under this model, the DFT

coefficients at each frequency bin k can be described by a sum of

P complex exponentials seen across time. However, under the as-

sumption of sufficiently long frame sizes, there will be no more than

one dominant exponential, say component p, per frequency bin.

Let us therefore assume that our deterministic model for a clean

speech DFT coefficient k is a single complex exponential, that is

X(k, n) =

K−1∑
m=0

apejφpejνp(m−nM)w(m)e−jωkm
(5)

= e−jνpnMX(k, 0), (6)

with w(m), m = 0, . . . , K − 1 the analysis window (of length

K) used to define the signal frame, M (≤ K) the frame shift and

ωk = 2π
L

k, where L (≥ K) is the DFT size. We can write (6) in the

form X(k, n) = znX(k, 0), with z = e−jνpM . If the noise is wide

sense stationary for n = i−n1...i+n2 and if M is sufficiently large

with respect to the correlation time of the noise, then the observed

noise sequence N(k, n) for n = i−n1...i+n2 is white. Estimation

of νp is then known as a standard harmonic retrieval problem [5].

Several algorithms exist for solving this problem, one of which is

the ESPRIT algorithm [6].

Let us assume that n = i − n1...i + n2 is the time span across

which the above proposed deterministic model is valid. In practice,

where only noisy observations Y (k, n) are available, we can approx-

imate Eq. (4) as

X̂(k, i) ≈ 1

n2 + n1 + 1

i+n2∑
n=i−n1

Y (k, n)ejνp(i−n)M , (7)

where we used the relation in Eq. (6) and where each term is cor-

rected for the phase shift (due to the frame shift).

2.3. Simulation Example

To demonstrate the potential of distinguishing between a stochas-

tic and deterministic model we conducted an initial experiment. In

Fig. 1a and Fig. 1b an original clean speech time domain signal and

its spectrogram are shown, respectively. The signal was degraded by

white noise at an SNR of 10 dB and enhanced using 2 different en-

hancement systems, one using the stochastic and one using the deter-

ministic model. We compute for each time-frequency point for each

method the resulting SNR and evaluate which of the two models lead

to highest SNR. This is shown in Fig. 1c per time frequency point; a

preference for the deterministic model is expressed as a black dot and

a preference for the stochastic model as a white dot. As expected,

the deterministic model performs better at the spectral lines that are

visible in the spectrogram (voiced regions), while in the unvoiced

speech regions, the stochastic model is preferred.

3. MMSE ESTIMATION UNDER COMBINED
STOCHASTIC-DETERMINISTIC SPEECH MODEL

We present three different setups for an MMSE estimator using a

combined SD speech model: a soft decision between the stochas-

tic and deterministic model which is combined with speech pres-

ence uncertainty, abbreviated with SOFT-SD-U, a hard decision be-

tween the stochastic and deterministic model which is combined

with speech presence uncertainty, abbreviated with HARD-SD-U

and a hard decision between the stochastic and deterministic model

where speech is assumed always present, abbreviated with HARD-

SD. We introduce the sets α = {A, P} and β = {D, S}. Here

α = A and α = P indicate speech absence and speech presence,

respectively, and β = D and β = S indicate that Y (k, i) follows the

deterministic model (3) and that Y (k, i) follows the stochastic model

(1), respectively. Although all derivations are per frequency bin k
and frame i, we leave out these indices for notational convenience.

This means that f(β = D|Y (k, i)) is written as f(β = D|Y ).

SOFT-SD-U Estimator
To find the MMSE estimator SOFT-SD-U, we compute the condi-

tional expectation E[X|Y ]. That is,

X̂ = E[X|Y ]

=

∫
X

X
∑

β

∑
α

f [X|Y, α, β]f(α|Y, β)f(β|Y )dX

= E[X|Y, α=P, β =D]f(α =P |Y, β =D)f(β =D|Y )

+ E[X|Y, α=P, β =S]f(α =P |Y, β =S)f(β =S|Y ), (8)

with the conditional probability densities computed using Bayes rule

as

f(β = D|Y ) =
f(Y |β = D)f(β = D)

f(Y |β=D)f(β=D) + f(Y |β=S)f(β=S)
,

f(β = S|Y ) = 1 − f(β = D|Y )

and

f(α = P |Y, β = D) =
f(Y |β = D, α = P )f(α = P |β = D)∑

α f(Y |β = D, α)f(α|β = D)
,

f(α = P |Y, β = S) =
f(Y |β = S, α = P )f(α = P |β = S)∑

α f(Y |β = S, α)f(α|β = S)
.

Here f(β = D), f(α = P |β = D) and f(α = P |β = S) denote

the prior probabilities, which we will specify in Section 4.
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Fig. 1. a) clean speech signal. b) Clean speech spectrogram. c)
Black: deterministic model has higher local SNR, White: stochastic
model has higher local SNR.

HARD-SD-U Estimator
The estimator HARD-SD-U follows from Eq. (8) by setting f(β =
D|Y ) either equal to 1 (deterministic model) or to 0 (stochastic

model). This means that

X̂ =

{
E[X|Y, α = P, β = D]f(α = P |Y, β = D) if det. speech

E[X|Y, α = P, β = S]f(α = P |Y, β = S) if sto. speech,

where the decision between the deterministic and stochastic speech

model is made with the following hypothesis test,

H0 : E [Y (k, i)] = 0
H1 : E [Y (k, i)] = X(k, i) and VAR [Y (k, i)] = σ2

n(k, i).

Under the H0 hypothesis the stochastic model is chosen and under

the H1 hypothesis the deterministic model. We decide between H0

and H1 using the Bayes criterion [7] and compare the likelihood ra-

tio T = f(Y |β=D)
f(Y |β=S)

with threshold λ = f(β=S)
f(β=D)

.

HARD-SD Estimator
Estimator HARD-SD assumes that f(α = P ) = 1. Therefore,

X̂ = E[X|Y ]

=

∫
X

X
∑

β

f (X|Y, β) f (β|Y ) dX.

So that,

E[X|Y ] =

{
E[X|Y, β = D] T ≥ λ
E[X|Y, β = S] T < λ,

with T and λ as given for the HARD-SD-U Estimator.

4. EXPERIMENTAL RESULTS

For objective evaluation segmental SNR is used, which is defined as

SNRseg = 1
L

∑L−1
i=0 T

{
10 log10

‖x(i)‖2

‖x(i)−x̂(i)‖2

}
[8], where x(i)

and x̂(i) denote frame i of the clean speech signal x and the en-

hanced speech signal x̂, respectively, L the number of frames within

the speech signal in question and T (x) = min{max(x,−10), 35},

which confines the SNR to a perceptually meaningful range. All

objective results are averaged over 10 different speech signals all
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Fig. 2. Stochastic model versus combined SD model for speech sig-
nals degraded by white noise.

sampled at 8 kHz. We use frame sizes of 256 samples taken with

50% overlap. For good time resolution in the estimation of (4), the

samples Y (k, n) are computed from frames with an overlap of 84%.

This overlap was chosen based on a trade off, where on one hand

a small overlap is desirable, to better satisfy the assumption made

in Section 2. On the other hand, a large overlap is necessary when

using multiple samples in (7), i.e. n1, n2 > 0, because approxima-

tion of (4) by (7) is only valid over relatively short time intervals. In

all experiments, noise statistics are measured during silence regions

preceding speech activity.

Furthermore, we chose n1 = 2 and n2 = 2 and the prior

probabilities as f(β = D) = 0.02, f(α = P |β = D) = 0.01
and f(α = P |β = S) = 0.2, based on performance in terms

of SNRseg . For the proposed methods the decision directed [1]

approach is used to estimate the a priori SNR ξ(k, i). We chose

α = 0.98 based on initial listening experiments. For comparison

we use the MMSE estimator under Gaussian distribution (Eq.(2)),

where ξ(k, i) is estimated with the decision directed approach with

α = 0.97 as proposed in [1] for the Wiener filter.

4.1. Objective Results

In Fig. 2 we evaluate the performance of the presented algorithms

SOFT-SD-U, HARD-SD-U and HARD-SD and compare that with

the use of a stochastic model alone (Wiener filter), for speech sig-

nals degraded by white noise at an SNR in the range from 0 dB to

20 dB. Over the whole range of input SNRs the proposed methods

improve the performance compared to the use of a stochastic model

alone. In terms of segmental SNR, the performance improvement

of HARD-SD over the use of a stochastic model alone is 0.14 dB.

Incorporating speech presence uncertainty, i.e. HARD-SD-U over

HARD-SD leads to another 0.44 dB improvement. Incorporating a

soft decision between the stochastic and the deterministic model, i.e.

SOFT-SD-U over HARD-SD-U, leads to an additional 0.60 dB im-

provement. Altogether, the improvement of SOFT-SD-U over the

use of a stochastic model alone is 1.18 dB. In Fig. 3 objective results

are shown for signals degraded by F16-fighter cockpit noise. The

figure shows similar performance as for the white noise case.

4.2. Subjective Evaluation

We use an extension of the perceptual evaluation of speech quality

(PESQ) measure [9], to get a first indication of the subjective quality
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Fig. 3. Stochastic model versus combined SD model for speech sig-
nals degraded by F16-fighter cockpit noise.
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Fig. 4. PESQ MOS scores for SOFT-SD-U (solid), stochastic model
alone (dotted) and noisy (dashed) for signals degraded by (a) white
noise (b) F16-fighter cockpit noise.

of the proposed SOFT-SD-U algorithm. In Fig. 4a and 4b we com-

pare the PESQ scores of SOFT-SD-U with a system where a stochas-

tic model alone is used, for speech signals degraded by white noise

and F16-fighter cockpit noise, respectively. Fig. 4a and 4b show that

for signals degraded by white noise and F16-fighter cockpit noise

respectively, at high input SNRs a PESQ improvement of 0.3, while

at low input SNRs the performance difference appears to vanish.

For further subjective evaluation, two OAB listening tests were

performed with seven participants, the authors not included. Here,

O is the original signal and A and B are two enhanced signals. The

listeners were presented first the original signal followed by two dif-

ferent enhanced versions. Each series was repeated 4 times with

the enhanced versions played in random order. We used 4 different

speech signals from the Timit database, two female speakers and two

male speakers, degraded by white noise at SNRs of 5 and 15 dB.

First, we evaluated the perceptual performance of using both the

speech presence estimator and the soft decision SD speech model

(SOFT-SD-U) compared to the use of a stochastic speech model

alone. The average relative preference for the SOFT-SD-U was 88%

and 83% at 5 and 15 dB SNR, respectively.

In the second listening test, we concentrated on the perceptual

impact of using a combined SD speech model instead of a stochastic

speech model alone. To do so we implemented a Wiener filter com-

bined with a speech presence uncertainty estimator and compared

that with our proposed method SOFT-SD-U, that also incorporates

speech presence uncertainty. The average relative preference for the

SOFT-SD-U method over the Wiener filter with speech presence

uncertainty was 63% and 59% at 5 and 15 dB SNR, respectively.

Comments given by the participants on the tested signals was that

the proposed SOFT-SD-U method leads to less suppressed and less

muffled speech sounds. However, this leads to more dynamics in the

enhanced signal, which was not appreciated by all listeners. At 15

dB, SOFT-SD-U was said to reduce the amount of echo like speech

distortions that are present using the stochastic model alone.

5. CONCLUSIONS

We presented an MMSE estimator under a combined stochastic-

deterministic speech model. Under the deterministic speech model,

clean speech DFT coefficients are modelled as a complex exponen-

tial across time with constant amplitude. Under the stochastic speech

model the speech DFT coefficients are assumed to be Gaussian dis-

tributed. The presented method is general and can be extended to

other distributions. With objective experiments and PESQ evaluation

it was shown that the proposed MMSE estimator leads to improve-

ments over the use of a stochastic speech model alone. Moreover,

listening experiments demonstrated a preference for the proposed

method.
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