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ABSTRACT

Robustness has been an important issue for applying speech tech-
nologies to real applications. While the Polynomial Segment Mod-
els (PSMs) have been shown to outperform HMM under the clean
environment, the segmental likelihood evaluation may make the
PSM distributions sharper and may adversely affect their perfor-
mance in mis-matched conditions. In this paper, we explore the ro-
bustness properties of the PSM under noisy and channel mis-match
conditions. In addition, unsupervised adaptation techniques have
been shown to work well for environmental adaptation even with
small amount of adaptation data. Thus, it is interesting to compare
the PSMs’ and the HMMs’ performances after applying two types
of unsupervised adaptation: the Maximum Likelihood Linear Re-
gression (MLLR) and the Reference Speaker Weighting (RSW).
Experiments were performed on the Aurora 4 corpus under both
clean and multi-conditional training. Our results show that even
under noisy and mis-match conditions, the PSMs performed well
compared to the HMMs both before and after environmental adap-
tation. Using the best lattice, the RSW adapted PSM gave word
error rates of 26.5% and 21.3% for clean and multi-conditional
training respectively which were approximately 24% better than
the unadapted HMM.

1. INTRODUCTION

As speech recognition technologies are applied to different appli-
cations, their robustness under different channel and environmen-
tal conditions becomes more important. Over the past decade, sig-
nificant progress has been made in robust speech recognition. In
[1, 2], front-end processing was modified to remove additive and
convolution noise. In [3, 4], the likelihood evaluation criterion and
the search process were modified to handle additive or impulsive
noise. To allow researchers to compare robustness algorithms with
the same data and experimental environments, the Aurora tasks [5]
were created. The Aurora 2 and 3 corpora were created for small
vocabulary tasks while the Aurora 4 corpus [6] was created for
large vocabulary tasks.

One way to improve system robustness is to adapt the recogni-
tion model to the noisy environments. Adaptation techniques, such
as the Maximum Likelihood Linear Regression (MLLR), which
was originally design to adapt to new speakers, can also be applied
to handle environmental mis-matches including channel changes
and additive noises [7]. In typical speaker adaptation, MLLR would
require moderate amount of adaptation data. However, in [8], we
showed that adapting HMMs to a new environment via MLLR was
effective even when the amount of adaptation data was limited
to only one single utterance of around 7 seconds. Alternatively,

fast adaptation schemes, such as the Reference Speaker Weighting
(RSW) which typically requires less adaptation data, may be more
effective in environmental adaptation in such condition.

The environmental adaptation scheme tried in [8] used the
HMMs as the acoustic models. Meanwhile, the Polynomial Seg-
ment Models (PSMs), which jointly model speech within a seg-
ment, were shown to outperform the HMMs in large vocabulary
continuous speech recognition (LVCSR) tasks under clean condi-
tion [9]. Because the PSMs are more constrained, it is not clear
whether they are flexible enough to perform well under noisy and
channel mis-matched conditions.

In this paper, we explore the robustness properties of the PSMs
under different training conditions: clean and multi-conditional
training. The test-sets include sets with additive noise and some-
times from different microphones. Because of the usefulness of
adaptation for handling changes in environment, we applied the
proposed PSM-based MLLR adaptation [10] and the PSM-based
RSW adaptation [11] to handle noisy environments. Experiments
were performed to compare their effectiveness under unsupervised
adaptation with a single utterance of adaptation data using the
ETSI advanced front-end features [1].

The rest of the paper is organized as follows. In Section 2,
the basic formulation of the PSM is presented. In Section 3, we
present the experimental setup and the HMM baseline results of
the Aurora 4 experiments. The Aurora 4 experimental results using
the PSMs are presented in Section 4. The results of the PSM-
based adaptations are presented in Section 5. Finally, the paper is
summarized in Section 6

2. POLYNOMIAL SEGMENT MODEL

The definition and parameter estimation of PSMs were first derived
in [12]. For a length N speech segment C, the PSM is defined as,

C = ZNB + E, (1)

where C is an N × D feature matrix for N frames of D dimen-
sional feature vector. ZN is an N × (R + 1) design matrix for
an Rth order trajectory model that maps the segments of different
durations to a range of 0 to 1, B is an (R + 1) × D parameter
model matrix and E is the residue error.

The maximum likelihood estimation of the trajectory parame-
ter matrix B is given by,

B = [Z′
NZN ]−1Z′

NC (2)

and the corresponding residue error covariance, Σ, is given by

Σ =
(C − ZNB)′(C − ZNB)

N
. (3)
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The triplet ,{B, Σ, N}, can be viewed as the sufficient statis-
tics for C. For a set of segments C1,...,CK of model m, the maxi-
mum likelihood estimation for the PSM parameter matrix B̂m and
the residue covariance Σ̂m are given by

B̂m =

"
KX

k=1

Z′
Nk

ZNk

#−1 "
KX

k=1

Z′
Nk

Ck

#
(4)

and

Σ̂m =

PK
k=1(Ck − ZNk B̂m)′(Ck − ZNk B̂m)PK

k=1 Nk

(5)

3. AURORA 4 SETUP AND BASELINE

The standard Aurora 4 tasks use the standard ETSI front-end [13]
and the Mississippi State University (ISIP) recognizer as the back-
end with four-mixture, cross-word triphone models. Models can
be trained with clean data (denoted as clean train) or multi-conditional
data (denoted as multi-train). The Aurora 4 tests include 14 test-
sets with different noise and channel conditions. In [14], the ad-
vanced ETSI front-end [1], which incorporated different noise re-
duction and channel equalization techniques, was used that re-
sulted in significant performance improvement.

Further performance improvement may be obtained by using
a different recognition back-end. In [8], we showed that using the
HTK (both front-end and back-end) gave significant improvement
compared with using the ISIP recognizer. Our HTK setup was sim-
ilar to [8] with the exception that the HTK front-end was replaced
by the advanced ETSI front-end. The 14 test-sets are grouped into
the following four families to simplify discussion and results re-
porting with the number inside the brackets representing the set
numbers defined in the Aurora 4 database.
1. Test-set A : clean data (set 1)
2. Test-set B : noisy data with same channel as training (set 2 to 7)
3. Test-set C : clean data with channel mis-match(set 8)
4. Test-set D : noisy data with channel mis-match (set 9 to 14)

Table 1. Our Aurora 4 baseline under clean and multi-condition
train using the HTK system.

Group A B C D Avg.
Clean Train 12.5% 29.4% 30.9% 44.2% 34.7%
Multi Train 14.1% 23.1% 25.7% 35.9% 28.1%

Table 1 tabulates the baseline performances of our Aurora 4
experiments using the clean- and multi-train training. Compared
to the results in [14], our HTK system achieves a 7% and 11% rel-
ative improvements on clean- and multi-train respectively. But the
comparison is not exact. In addition to differences in recognition
back-end, both training and test-set were end-pointed in [14] to
remove excess silence in the ISIP system [6]. In our HTK sys-
tem, only the training data were end-pointed to avoid assumption
of end-points in the test data. Also compressed speech features
were used in [14] while we used the uncompressed features. Nev-
ertheless, results of our HTK system is comparable with the results
in [14] and it will serve as the baseline results in this paper.

4. UNADAPTED PSM EXPERIMENTS

Our PSM system was trained following the same procedure as
in [15]. Similar to the HMM system, 4-mixture, cross-word tri-
phone models were used. Each triphone was represented by 3
linear segments. While it is computationally feasible to perform
full PSM recognition search [9], we currently do not have a cross-
word, PSM-based recognizer. Instead, the PSM recognition was
performed by re-scoring HMM-generated lattices. However, opti-
mal segment boundaries were searched using the efficient search
algorithm [9] during both training and re-scoring.

Table 2. Aurora 4 experiment using PSM (4mix and 3 token lat-
tice)

Word Error Rates [Relative Improvements %] (%)
Group A B C D Avg.

Clean Train 10.4 27.7 29.7 43.9 33.5
[16.3] [5.8] [3.9] [0.7] [3.2]

Multi-train 12.6 20.5 24.3 33.6 25.8
[10.9] [11.3] [5.6] [6.4] [8.1]

Table 2 summarizes the PSM recognition performances using
lattice re-scoring under different training conditions. The rela-
tive improvements over the HMMs are tabulated inside the square
brackets. From the clean-train results in the first row, we note
that for the clean test (Group A), the PSMs are about 16% bet-
ter than the HMMs which is consistent with results in [15]. The
performance on the noisy data is not as good and the overall gain
is only 3%. Using the Match Pair test, the PSMs are significant
better than HMMs in groups A and B but not C or D. One rea-
son may be the differences in lattice qualities between the groups.
Table 3 summarizes the HMM lattice quality, showed in the third
row, which are the relative improvements of the performance of
best in the N-best (second row) over the performance of the first
best (first row). As can be observed, the lattice quality decreases as
mis-match increases. This affects the performance of the PSM lat-
tice re-scoring. Another possible reason is that because the PSMs
are more constrained than HMMs, their distributions are possibly
sharper with thinner tails that hurt their performance under mis-
matched conditions.

Table 3. Quality of lattice as measured by the word error of the
first best and the word error of the top 50 N-best under clean train

Word Error Rates (%)
Test-set A B C D
First best 12.5 29.4 30.9 44.2

Best of 50 N-best 6.3 19.1 21.5 33.9
Relative Impr. 50% 35% 30% 23%

For multi-condition training (last row of Table 2), the PSMs
outperform the HMMs by 10% on test-set A and B. For test-sets in
mis-matched channels (C and D), the improvements are about 6%
resulting in an average improvement of 8.1% which is significantly
higher than the clean-train case. Because the noise and channel
conditions are observed in training, they probably are captured by
the sharper PSM distributions. Except for group C, the PSMs are
significantly better than the HMMs as measure by the Match-pair
test.
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5. ADAPTATION EXPERIMENTS

We applied unsupervised environmental adaptation to improve recog-
nition performance under noisy and mis-matched channel condi-
tions on Aurora 4. In these experiments, a first pass decoding was
performed using the SI models and that decoding output was used
to estimated the MLLR transformation or the weights in RSW. The
adapted models were then used in a second pass decoding. Be-
cause the channel and noise conditions differ for each utterance
(based on noise type, channel type and SNR) in Aurora 4, un-
supervised adaptation was performed using only one utterance as
adaptation data for both the HMMs and the PSMs.

5.1. The MLLR Adaptation

For the MLLR-based environmental adaptation, because non-speech
segments contain noise and channel information, a single MLLR
transformation, including both speech and non-speech (e.g. si-
lence) sounds, was used instead of using separate transforms which
is more common in speaker adaptation tasks. The same transfor-
mation structure was applied to both systems.

The PSM-based MLLR adaptation is similar to the one in [10]
except that in this experiment, the first pass (SI models) decoding
used lattice re-scoring instead of N-Best re-scoring. This lattice
was generated from the SI HMMs with 3 recognition tokens.

Table 4. MLLR adaptation on Aurora 4 using the PSMs and the
HMMs

Word Error Rates [Relative Improvements %] (%)
Group A B C D Avg.

Clean Train 12.2 28.4 26.7 41.9 32.9
HMM [2.4] [3.5] [13.4] [8.5] [5]

Clean Train 10.2 26.6 27.3 41.9 32.1
PSM [2.1] [4.0] [8.0] [4.4] [4.2]

Multi Train 13.7 22.7 24.5 35.3 27.6
HMM [2.8] [1.7] [4.7] [1.7] [1.8]

Multi Train 12.4 20.3 22.8 33.1 25.4
PSM [1.6] [1.0] [6.2] [1.5] [1.6]

Table 4 shows the results of the HMM-based and the PSM-
based MLLR. Their relative improvements as compared to their
corresponding SI models are tabulated inside the square brackets.
For the clean test, because there is no channel mismatch nor noise,
MLLR is only adapting the speaker with the very limited amount
of data (1 utterance) and resulted in only a small gain. This is con-
sistent with what we observed in [8]. Relative improvements on
group C and D are better than group B probably because the mis-
matched channel, which is unobserved in training but is stationary
across the test utterance, may be easier to compensate using a sin-
gle global transformation than the additive noise whose non-linear
nature can affect the cepstral coefficients differently depending on
the instantaneous SNR. We should point out that the gain from
MLLR adaptation is much smaller for multi-train than clean-train.
Our conjecture is that under multi-train, the channel and noise con-
ditions are already partially captured by the SI model and this re-
duces the benefit of the adaptation.

For the PSM-based MLLR adaptation, although the PSMs al-
low the flexibility of shifting the linear factor [10], it was not used
in these experiments. Comparing the relative improvements be-
tween the HMM-based MLLR and the PSM-based MLLR, the

PSM-MLLR is somewhat less powerful in group C and D but the
relative improvement on average, does not differ significantly and
the overall accuracy of the PSMs after MLLR still out-perform the
HMMs for both clean- and multi-train training.

5.2. The RSW Adaptation

Because in Aurora 4, noise and channel condition changes be-
tween utterances, the amount of adaptation data is limited to a
single utterance. MLLR, which still requires a fairly high num-
ber of parameters to be estimated, may not be the best choice for
the speaker or environment adaptation in this case. Instead, RSW
adaptation can be used. In RSW, the adapted model is built as a
weighed sum of a set of reference speaker models where only the
weights are learned from the adaptation data. Thus, the number of
free parameters is equal to the number of reference speakers which
can be relatively small.

The PSM-based RSW adaptation is described in [11]. In both
the HMM and the PSM systems, all the training speaker were used
as reference speakers.

Table 5. RSW adaptation on Aurora 4 using the PSMs and the
HMMs

Word Error Rate [Relative Improvement %] (%)
Group A B C D Avg.

Clean Train 10.3 23.8 25.5 37.3 28.7
HMM [17.0] [19.0] [17.4] [15.6] [17.2]

Clean Train 9.7 24.7 25.8 39.2 29.9
PSM [7.0] [10.8] [13.1] [10.8] [10.7]

Multi Train 12.5 20.1 19.6 30.3 23.9
HMM [11.0] [13.0] [23.9] [15.6] [15.0]

Multi Train 12.0 19.2 21.0 30.8 23.8
PSM [4.5] [6.8] [13.7] [8.3] [7.6]

Table 5 shows the results of the RSW adaptation and their rela-
tive improvements over the corresponding SI models. We observe
that significant improvements were obtained on both the PSM and
HMM-based RSW. Compared with the MLLR, the RSW is better
able to handle such small amount of adaptation data. The clean test
(set A) is an indicator of the portion of gain coming from adapting
to the speaker. While the RSW obviously works well for set A,
the results of using such a constrained approach for environmen-
tal adaptation in other sets are not obvious. Because RSW actu-
ally constrains the adapted model parameter space to be spanned
by the reference speaker model parameters, this speaker sub-space
may not be a good sub-space for noisy or channel mis-matched
data especially for clean-train because no noise nor the channel in-
formation is available during training. However, since the relative
improvement of mis-match test-set is higher than the clean test-
set, it shows that the improvement from RSW adaptation comes
not only from better adapting to the speaker but also in adapting
to the environments. This seems to suggest that with a set of 84
reference speakers from training, the sub-space spanned by these
reference speakers does capture a good part of the variations due to
channel and noise. For multi-train, it seems that a mix of speakers
with different channels and noise actually reduces the gain from
speaker adaptation as seem in the reduced gain in the clean test.
Similarly to the clean train, the noisy and channel mis-match sets
gave better relative improvements.

When we compare the performance of the PSM-based and
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the HMM-based RSW performances, we find that the PSM-based
RSW did not work as well. One possible reason is again the
lattice quality. Since the unadapted HMMs was used to gener-
ate the re-scoring lattice, the adapted PSMs may not have a big
enough search space to show its improvement. To test this hypoth-
esis, we re-scored the adapted PSMs using the lattices generated
from RSW-adapted HMMs. In order to have fair comparisons,
the adapted lattice was used only for adapted re-scoring. Table 6
shows the performances of the PSM-based RSW using the adapted
HMMs lattice. Significant improvement was shown after replac-
ing the lattice such that the PSM-based RSW now outperformed
the HMM-based RSW. This gives our best Aurora-4 performances
of 26.5% and 21.3% for clean-train and multi-train respectively.
The gain can come from a combination of two factors: the com-
binational effect of the HMM- and PSM-adapted models or the
improved lattice space. However, for clean train, the drastic im-
provement in sets B, C and D over improvements of set A suggests
that the lattice quality is more likely the cause.

Table 6. The PSM-based RSW on Aurora 4 clean and multi-
condition trained models with RSW adapted HMM lattice

Word Error Rates (%)
[Relative Impr. over unadapted PSMs(%)]

Group A B C D Avg.
Clean Train 9.1 22.0 23.0 34.5 26.5

[12.3] [20.7] [22.6] [21.4] [21.0]
Multi Train 10.9 17.7 17.0 27.3 21.3

[12.0] [13.7] [30.0] [18.7] [17.6]

6. CONCLUSION

In this paper, we examined the robustness properties of the PSMs
using the Aurora 4 corpus. We found that the improvements of
the PSMs over the HMMs were smaller in noisy environments,
with the average improvement of 3.2% and 8.1% for clean and
multi-condition training respectively. By applying the PSM-based
MLLR and RSW adaptation, we showed that the PSM-based RSW
not only performed better in capturing speaker characteristics in
clean test condition, it is also better in adapting to noise and chan-
nel mis-matched conditions.

To obtain the best results, we made use of the adapted HMM
lattice for the PSM-based RSW experiments that achieved the word
error rates of 26.5% and 21.3% for clean-train and multi-train re-
spectively, which were about 23% relatively better than the un-
adapted HMMs.

Since the lattice quality can be a limiting factor for the PSMs
especially for the noisy tasks such as Aurora 4, we plan to develop
a single-pass cross-word PSM-based LVCSR system.
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