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ABSTRACT

In this paper, a novel one-pass coarse-to-fine decoding algo-
rithm is proposed to accelerate the speed of Segment Model
(SM). The algorithm is originated from the segmentation sim-
ilarity observation described in the paper and is specific for
the SM based speech recognition. At each step, a coarse
search is first implemented to get coarse segmentations and
then a fine search is performed based on the derived segmen-
tation information. This fast algorithm is successfully inte-
grated into an SM based Mandarin LVCSR system and saves
more than 50% decoding time without obvious influence on
the recognition accuracy.

1. INTRODUCTION

Segment model (SM) is a family of methods that adopt seg-
mental distribution rather than frame-based features to rep-
resent the underlying trajectory of the observation sequence.
So some limitations of Hidden Markov Model(HMM), such
as the observations conditional independent assumption and
non-stationary observation sequences that are modelled by
a piecewise constant state [2][8], can be partially resolved
by SMs. Due to the high complexity, SMs are hard to be
employed in large vocabulary continuous speech recognition
(LVCSR) unless the speech utterance is pre-segmented by
HMM[9][10]. How to directly and efficiently apply SMs into
the LVCSR system is still an open issue.

V. Digalakis et al [3] suggested a pruning method to speed
up SMs by estimating segment scores from part of segments.
In our previous work, a coloring speech method[5] is used
to choose acoustic models before measuring segment scores.
These methods decrease the run-time of SMs greatly and have
laid the foundation for the application of SMs in LVCSR.
However, the run-time of the SM based system is still slower
than the real-time and more fast algorithms are required.

In this paper, a novel segmental based coarse-to-fine(CF)
algorithm is proposed. It consists of two phases, a coarse ex-
tension phase and a fine extension phase. These two phases
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are applied at each step one by one. The coarse phase decodes
the speech in a jumping way while the fine phase refines the
decoding by means of measuring these points which are im-
portant for the final recognition result. These key points are
detected in the coarse phase and the extension results obtained
in the fine phase are the basis for following coarse searches.
Both phases are carried out in one-pass while the previous
coarse-to-fine decoding methods are multi-pass based [4].

The rest of this paper is organized as follows. A brief in-
troduction of Stochastic Segment Model(SSM)[2], the acous-
tic model adopted in the system, is given in Section 2. Then
in Section 3, the CF algorithm is presented. Section 4 shows
the experimental results and analysis. Conclusions are drawn
in the last section.

2. STOCHASTIC SEGMENT MODEL

SSM represents the variable length observation sequence by a
fixed length region sequence. A resample function is needed
to map the observation segment xN

1 = {x1, x2, ...xN} to the
fixed length frame sequence yL

1 . The re-sampled frame is
measured by ”region”, which is similar to the conception of
the state in HMM, and L is the length of region sequence in
each SSM.

yi = x� i
L N�, 0 < i ≤ L, (1)

where �z� is the maximum integer no larger than z.
The log-likelihood of a segment xN

1 given model α:

ln[p(xN
1 |α)] =

L∑
i=1

ln[p(yi|α, ri)] (2)

where ri is the i-th region model in segment model α. Usu-
ally, each region consists of mixture Gaussians.

The decoding of SSM is a two-level process [1]. The first
level is segment classification by the Bayesian approach.

Dm(τ) = max
α

{ln[p(xm
τ |α)](m − τ) + ln[P (α)]

+ ln[Ps(xm
τ |α)]}, 0 ≤ τ < m. (3)

where Dm(τ) is the highest likelihood score for feature seg-
ment xm

τ , P (α) is the language score and Ps(xm
τ |α) is the
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segmental score (duration, etc). Then the combination of seg-
mentations with highest probability is chosen as the recog-
nition result in the second level. Given a sentence xT

1 , the
process can be expressed as follows:

J∗(m) = max
τ

{J∗(τ) + Dm(τ) + C}, J∗(0) = 0, (4)

Bls(m) = arg max
τ

{J∗(τ) + Dm(τ)}, Bls(0) = 0, (5)

where 1 ≤ m ≤ T, 0 ≤ τ < m, Bls(m) is the best local start
(BLS) point for m, J∗(m) is the accumulated score of the
best acoustic model sequence at point m and C is the insertion
factor for each segment. A candidate set and an expanding set
are formed at each point during decoding. The candidate set
is a collection of hypothesized models ending at this point and
the expanding set is the collection of triphone models which
succeed the models in the candidate set. The decoding is per-
formed from 1 to T point by point to get the final solution.

3. THE CF DECODING ALGORITHM

3.1. Segmentation similarity

Segmentations with high likelihood are always similar to or
differ from the ”true” segmentation by one or two frames. The
”true” segmentation can be the result of recognition or force-
alignment. A good demonstration for this is the n-best list or
word lattice, in which paths with high likelihood have similar
structure.

Due to the similarity of segmentation, we can ”guess” the
underlying boundaries from partial segmentation information.
Based on the observation above, a segment based CF algo-
rithm is developed, which includes two phases at each step: a
coarse extension phase and a fine extension phase.

3.2. Coarse extension

Instead of estimating all possible partitions, only segments
that begin and end at the basic point set KS = {0, S, 2S, ...}
will be measured in the coarse phase, where S is the CF step.
J∗

c (m) and B̂ls(m) are defined as the approximate versions
of J∗(m)and Bls(m) in KS ,

J∗
c (m) = max

τ
{J∗

f (τ) + Dm(τ) + C}, (6)

B̂ls(m) = arg max
τ

{J∗
f (τ) + Dm(τ)}, m, τ ∈ KS , (7)

The definition of J∗
f is a little different from J∗ in Equ.(4)

and will be given in the fine extension phase of CF later. For
examples, when S equals 1, the CF algorithm is simplified to
the conventional SM decoding algorithm; when S sets to 2,
only segments begin and end at even points will be measured
in the coarse phase. No losing generality, we assume that T ,
the last frame of the speech sequence, belongs to KS . For
those sequences incompatible with this assumption, we can
add some silence frames at the end of the sequence and it will
not influence the recognition accuracy.

3.3. Fine extension

The fine extension phase is to compensate the accuracy loss
introduced during the coarse phase. We define the neighbor-
ing points of κ ∈ KS as follows:

Nr(S, κ) =
{ ∅, κ = 0

{κ−S+1, . . . , κ+S−1}−{κ}, κ ≥ S
(8)

In the coarse phase, the decoder only stops at KS . As-
suming the decoder currently moves to point m ∈ KS and we
get B̂ls(m) during the coarse extension phase. Based on the
segmentation similarity introduced in Section3.1, we assume:

Bls(m′) ∈Nr(S, B̂ls(m)) ∪{B̂ls(m)}, (9)

where m′ ∈Nr(S,m) ∪{m}. So measuring segments orig-
inated from points inNr(S,B̂ls(m)) to m will be helpful to
obtain a better BLS point of m. It is called the current-point
extension (CPE). Segment models extended to m during the
coarse phase and the fine phase will form the candidate set at
m together. In CPE phase, J∗

f is defined as

J∗
f (m)=max

τ
{J∗

f (τ)+Dm(τ)+C}, τ ∈KS ∪Nr(S, B̂ls(m)).
(10)

Such extensions may not be available for those points, of
which B̂ls points are larger than S, since no hypothesized
model will end at the neighboring points of those B̂ls points
in the coarse extension. Hence, another extension, the fore-
point extension (FPE), is introduced to connect those points,
i.e. Nr(S, B̂ls(m) in Equ.(10), with the obtained decoding
result. According to the assumption in (9), the BLS points for
points in Nr(S, B̂ls(m) are limited to Nr(S, B̂ls(B̂ls(m))).
So, we can measure segments from Nr(S, B̂ls(B̂ls(m))) to
Nr(S, B̂ls(m) to get the J∗

f s of Nr(S, B̂ls(m)). And, J∗
f in

Equ.(10) is re-defined as Equ.(11) in FPE,

J∗
f (τ)= max

τ ′
{J∗

f (τ ′)+ Dτ (τ ′)+ C}, τ ∈Nr(S, B̂ls(m))

τ ′ ∈ Nr(S, B̂ls(B̂ls(m))) ∪ {B̂ls(B̂ls(m))}, (11)

Again, the validation for point τ ′ in Euq.(11) needs to be con-
sidered.

1. If B̂ls(B̂ls(m)) = 0, Nr(S, B̂ls(B̂ls(m))) = ∅ and
J∗

f (0) set at the initial stage of the algorithm;

2. If B̂ls(B̂ls(m)) ≥ S, m > B̂ls(m) and the CPE at
B̂ls(m) has been done. So J∗

f (τ ′)s were obtained when

the CPE was done at B̂ls(m).

In the both cases, J∗
f (τ ′)s have already been measured

before we do FPE at m, so the FPE can be done successfully.
The whole CF procedure is illustrated by the flow chart

in Fig.1. When the decoder moves to the current point m, a
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Fig. 1. The flow chart of CF decoding.

1 m ← 0, J∗
0 ← 0;

2 while m ≤ T do
3 m ← m + S
4 mmin ← max{m − Lext, 0}
5 τ ← max{(m − S), 0}
6 while τ ≥ mmin do // Coarse Phase //
7 measuring Dm(τ), τ ← (τ − S)
8 repeat
9 computing J∗

c (m) and B̂ls(m)
10 foreach k∈Nr(S, B̂ls(m)) // Fine Phase //
11 if J∗

f (k) is not available, then

12 foreach d∈Nr(S,B̂ls(B̂ls(m)))∪{B̂ls(B̂ls(m))}
13 measuring Dk(d) // FPE //
14 repeat
15 computing J∗

f (k) by Equ.(11)
16 endif
17 measuring Dm(k) // CPE //
18 repeat
19 computing J∗

f (m) by Equ.(10)
20 repeat
21 Trace back to get the best word sequence. #

Fig. 2. The CF Extension algorithm of SM. Lext is the al-
lowed maximum segment duration.

coarse extension is executed; then we do CPE at the neighbor-
ing points of B̂ls(m) to compensate the accurate loss intro-
duced by the jumping decoding. If J∗

f (τ)s have not been ob-

tained, where τ ∈Nr(B̂ls), a FPE is required for these points
before the CPE is done at m. Finally, the decoder moves for-
ward from m to m + S and the procedure will be repeated
until the final point is reached. Details of the algorithm are
listed in Fig.2.

4. EXPERIMENTS AND ANALYSIS

4.1. Experimental setup

The data corpus applied in experiments is provided by Chi-
nese National Hi-Tech Project 863 for Mandarin LVCSR sys-
tem development [6]. 83 male speakers’ data are employed
for training (48373 sentences, 55.6 hours)and 6 male speak-
ers’ for test (240 sentences, 17.1 minutes). Acoustic features
are 12 dimensions MFCC plus 1 dimension normalized en-

Table 1. Parameters of HMM and SSM in system.

Model Models Regions Mixtures Durations
HMM 18364 5068 16 −
SSM 24180 7983 12 2144

Table 2. Comparison of HMM and SSM for Test-863.

Model Sub% Del% Ins% Err%
HMM 15.6 0.1 1.3 17.0
SSM 12.9 0.1 0.0 13.0

Table 3. Recognition results with different CF step S. ”∗”
rows are the results without the fine phase.

S Sub% Ins% Del% Err%
2 12.8 0.2 0.0 13.0
3 13.7 0.2 0.0 13.9
2∗ 15.0 0.2 0.0 15.2
3∗ 16.9 0.2 0.1 17.1

ergy and their 1st and 2nd order derivatives. There are 24
syllable initials and 37 syllable finals in our Mandarin phone-
set. Each syllable final has 5 tones.

The baseline of SM is a context-dependent triphone SSM
recognition system [5]. The search pathes are organized by
the lexical tree and begin/end with the silence model. Each
segment model is sequentially composed of 15 regions and
each region is modelled by 12 Gaussian mixtures. Region
models are tied by phone based decision trees. Triphone based
duration models are used to improve the system accuracy.

To make the experiments comparable, a continuous den-
sity HMM (CDHMM) is developed as the baseline of HMM
by HTK V3.2.1 [7]. The structure of HMM is left to right with
5 states, 3 emitting distributions and no state skipping, except
”sp” (short pause) model with 3 states, 1 emitting distribu-
tion. Each emitting distribution is modelled by 16 Gaussian
mixtures. The details of these two baselines are listed in Ta-
ble 1. The ”Models”, ”Regions”, ”Mixtures” and ”Durations”
in Table 1 are the number of models, regions (or states), mix-
tures and duration models in SSM (or HMM) respectively.
A bigram language model with 48188 words is used both in
HMM and SSM systems.

4.2. Results and analysis

Table 2 gives the baseline recognition results of the test set. In
this table, ”Del”, ”Ins”, ”Sub” and ”Err” represent the dele-
tion, insertion, substitution and character error rate respec-
tively. The HMM baseline achieves 17.0% character error
rate and SSM achieves 23.5% relative error reduction com-
pared with the HMM baseline. The SSM result is even com-
parable to [6], in which a trigram language model is used.
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Fig. 3. The run-time as function of the CF step S.

Table 3 gives the recognition results with different CF
steps. When S sets to 2, the recognition result is slightly
changed compared with the original one; when S equals 3,
the recognition result is downgrade slightly. Rows with ”*”
show the recognition results of the CF algorithm without the
fine phase. The error rate is increased obviously when the fine
search step is ignored. The time comparison is illustrated in
Fig.3. The decoding time without CF is 168.4 minutes and is
approximately 10 times of the real time. When S sets to 2,
51.7% decoding time is saved; and more than 18.9% time is
saved again when S equals 3. Since the run time of HMM
with language model built by HTK is much slower than real
systems, we don’t compare it with the SSM system.

4.3. Complexity analysis

We measure the complexity of the decoding algorithm from
two aspects: the number of segments extended and the num-
ber of Gaussian models measured. For a sentence with T
frames, the maximum segment duration is Lext and the aver-
age number of hypothesized models expanded at each points
is M . That is to say, there are average Lext·M model instances
expanded to the current point and the number of model in-
stances evaluated per sentence using the conventional decod-
ing is approximately O(T ·Lext ·M). The CF algorithm only
needs to compute Lext ·M/S +4S ·(S − 1) ·M instances at
each time point, where Lext ·M/S instances are expanded in
the coarse extension phase, 2(2S−1) ·(S−1) ·M instances
in FPE and 2(S−1) ·M instances in CPE. Considering that
most BLSs for points in the same segment are same, FPE is
not necessary in most points and the number of model mea-
sured during fine phases is much less than the one in coarse
phases. If we ignore the number of instances computed in fine
phases, we could get the bottom boundary of model instances
evaluated per sentence, that is, O(T ·Lext ·M/S2), which is
S2 times less than the one without CF. Due to region models
could be shared by different model instances (different mod-
els or same model with different durations), it is hard to give a
general formula for the number of Gaussian models evaluated
during decoding. In practice, when S sets to 2, the number of
Gaussian models evaluated in the improved method is average
15.2% less than the conventional one’s (216150 vs. 254894
per sentence).

5. CONCLUSIONS

In this paper, A novel SM decoding method, the one-pass CF
algorithm, is proposed to decrease the aimless extensions dur-
ing SM decoding. The coarse phase offers useful hints for the
successive fine phase to expand models and the fine phase
gives a precise basis for the following coarse phases. The
two phases are performed alternately at each basic point and
the search process is finished within one pass. This fast algo-
rithm greatly enhances an SSM-based LVCSR system without
obvious influence on the performance, which is significantly
better than the corresponding HMM-based system. The ex-
periments show that, after fast SM algorithms have been em-
ployed, SSM could be a good alternative to HMM for LVCSR.
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