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ABSTRACT

This paper builds on previous work aimed at unraveling the
structure of the speech signal using probabilistic representations.
The context of this work is a multi-pass speech recognition system
in which a phone lattice is created and used as a basis for a lexical
decoding pass (search) that allows symbolic mismatches at certain
costs. The focus is on the optimization of the costs of the phone
insertions, deletions and substitutions that are used in the lexical
decoding pass. Two optimization approaches are presented, one
related to a multi-pass computational model for human speech
recognition, the other based on a decoding that minimizes Bayes’
risks. In the final section, the advantages of the two optimization
methods are discussed and compared.

1. INTRODUCTION

Currently, there is a growing interest in revisiting multi-pass
approaches for automatic speech recognition (ASR) e.g. [2] [5]
[11]. In a multi-pass system, a (weighted) phone lattice is often
created in the first pass, followed by a lexical search applying
additional specialized decoding steps, or using more detailed
information, e.g., morphological and domain knowledge.
Compared with an integrated search, there are at least two
advantages to such an approach. First, a multi-pass approach is
useful when spoken keywords are to be detected from a potentially
wide range of domains such as meetings, interviews, voicemails,
and lectures (cf. [14]). A second advantage is the greater flexibility
with which specialized knowledge sources can be brought to bear
in subsequent passes, utilizing cross-word triphones, phonotactic
restrictions, morphology, long-span syntax, etc. (e.g., [2]).

Weighted phone lattices have shown to be very versatile in a
recently developed computational model for human word
processing (SpeM). SpeM is a multi-pass decoder in which a
phone recognizer in the first pass generates a phone lattice that is
used in the subsequent lexical search module. SpeM has been used
to successfully model a number of key results from psycho-
linguistic experiments [8][9]. In SpeM, mismatches between the
phone sequences in the lattice and the phone representations
(originating) from the lexicon are dealt with in a more flexible
manner than in previous computational models of human auditory
word recognition. However, although SpeM does offer more
flexibility, all the experiments conducted so far have applied the
same penalty for each substitution (and mutatis mutandis also for
each insertion and deletion) in the lexical decoding. In other
words, only three indiscriminate penalties have been used.

In SpeM, the acoustic scores (costs) in the phone lattice
computed by the phone recognizer, and the penalties of the phone
mismatches (also called ‘symbolic mismatches’) interact in a
complex way. For example, if the mismatch cost is low, the
likelihood of associating phone paths in the lattice with a word
sequence will be large (since mismatches are cheap), and therefore
the probability of decoding the correct word sequence might
diminish. On the other hand, if the mismatch penalties are high,
phone paths must be canonical (and are therefore less likely to
have a low cost) to induce a lexical solution; this evidently
decreases the likelihood of finding any lexical solution in the
phone graph. Therefore, the correct trade-off between the values of
‘symbolic’ mismatches on the one hand and the acoustic costs in
the phone lattice on the other hand is essential for the success of
any lexical search pass that takes the phone lattice as input.

This paper focuses on approaches to find an optimal balance
between acoustic scores and symbolic mismatch penalties. More
specifically, our aim is to investigate how the costs for insertions,
deletions, and substitutions affect the likelihood of finding the
phone sequence that corresponds to the correct word sequence (as
defined by the annotation on word level), and how these optimal
costs relate to the acoustic costs in the phone lattice. To that end,
we discuss two related optimization approaches. In Section 2, we
will deal with the optimization in the context of the SpeM
decoding, in which the optimal values for mismatch penalties have
been found by a systematic search based on insight in the structure
of the search space. In Section 3, we will deal with another, data-
driven way to derive optimal mismatch penalties (Minimal
Bayesian Risk Decoding). In the final section, we will relate the
two approaches and discuss their advantages and disadvantages.

2. LEXICAL PHONE PATHS AND SYMBOLIC
MISMATCHES

Our starting point is a phone lattice generated by a free phone
loop, guided by a phone bigram. In general, it is often the case that
the canonical phone transcription of a word (sequence) is not
present in the phone graph, even though a phone lattice may
consist of millions of phone paths. For instance, earlier research
has shown that the canonical phone transcription of the utterance
was not present in the phone graph for 34.9% of a set of 885 phone
lattices that were created with a phone bigram [12]. Therefore,
phone insertions, deletions, and substitutions must be dealt with to
decode utterances in terms of lexical tokens.

In this section, we investigate which conditions will result in
the discovery of correct ‘lexical’ phone paths in phone lattices if
symbolic mismatches are allowed. A phone path is ‘lexical’ if it is
a series of phone sequences corresponding to words in the lexicon,
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and ‘correct’ if it is made up of those phone sequences that
correspond to the orthographic transcription.

The approach consisted of the following steps:
1) For each utterance, a phone lattice is created using

acoustic models trained on an independent training set.
2) A word search algorithm is used to search phone paths

associated with sequences of words – allowing symbolic
mismatches (phone insertions, deletions, and substitutions)
at a specific cost.

3) Symbolic mismatch penalties are chosen to optimize the
likelihood of the correct lexical phone path being the best
among all other lexical phone paths through the lattice.

Below, these steps are described in more detail.

2.1. Data and feature extraction
We used a sub-corpus of the Spoken Dutch Corpus, a 9-million-
word database comprising 1000 hours of speech annotated on
various tiers (e.g. orthographic, prosodic, part-of-speech) [6]. This
sub-corpus contains read speech from a Dutch spoken library for
the blind. The material comprises word labels as well as manually
verified word-level segmentations.

The data in the sub-corpus were divided into three sets: a
training set, test set and a development test set (4027, 687 and 687
sentences, respectively). Table I gives an overview of the number
of word tokens, speakers, and the amount of speech material per
set.

Table I. Datasets used in this study.

Training Test Development Total

Orthographic
word tokens

45,172 7,917 7,507 60,596

Speakers/
Female/Male

125/
70/55

125/
70/55

125/
70/55

125/
70/55

Duration
(hh:mm:ss)

04:51:27 00:51:34 00:48:13 06:31:14

Feature extraction was carried out at a frame rate of 10 ms using a
25-ms Hamming window. A pre-emphasis factor of 0.97 was
employed. 12 Mel Frequency Cepstral Coefficients (MFCCs) and
log-energy with corresponding first and second order time
derivatives were used. Channel normalization was applied by
means of CMN over complete recordings (with a mean duration of
3.5 minutes). For training and testing purposes, the data were
chunked to grammatical sentences. The feature extraction was
performed using HTK [13].

The training corpus was used to create 39 context-independent
acoustic models (including 2 different silence models; all models
are 3-state left-to-right HMMs with 8 Gaussians per state) on the
basis of the lexical phone transcriptions. The lexicon covered all
words in the training, test, and development sets, and contained
one pronunciation variant per word.

A phone bigram (‘phonotactic model’) was trained on the
lexical phone transcriptions of the training corpus. Since leading
and trailing silences as well as inter-word silences are annotated on
the word level, this method automatically includes bigrams of the
form P(sil|φ) and P(φ|sil) (φ denoting an arbitrary phone).

2.2. Phone lattice parameter settings
For the construction of the phone lattices, the phone insertion
probability and phone-LM factor were tuned using the
development set such that the number of phones of the first-best
phone path and the number of phones of the canonical phone
transcription were equal on average. This was done since
mismatches with respect to these lengths will bias the values for
phone insertions and deletions. Furthermore, the LM factor was
chosen to be as close as possible to 0 (i.e., the decoding is as
unbiased as possible). As a result, the insertion log probability and
the LM factor were set to -6 and 4, respectively. The beam width
was chosen to be large enough to make sure that the time-averaged
number of arcs with different phone labels was close to 3, i.e., a
plausible number of realistic phonetic alternatives is present in the
lattice. On average, the resulting lattices had 810 arcs/second, with
12-18 arcs alive per a time slice of 10 ms. The phone paths
contained approximately 12.8 phones/second.

2.3. The lexical decoder and the search space
In this reseach, the search for the lexical phone paths through the
phone lattices was based on an FST decoder. This decoder was
constructed by interfacing an HTK phone decoder with the AT&T
wFST software [4]. The decoding was implemented by a finite
state composition of the phone lattice and an FST. This FST was
based on the lexical tree, but expanded by including additional arcs
with appropriate costs: arcs that accepted any input and wrote out
the null label ε (modeling phone insertions), arcs that accepted ε
and write out a phone label (deletions), and arcs that accepted a
phone φ2 and wrote out φ1 (substitutions). All insertions shared the
same penalty value (idem for deletions and substitutions, resulting
in three penalties).

[12] shows that the penalties for symbolic mismatches are to be
chosen within certain bounds related to the acoustic scores in the
original phone lattice. The structure of the eventual search space is
a union of lattices, such that each of these lattices is associated
with exactly one triplet [I, D, S] of non-negative integers I, D and S
(representing the number of insertions, deletions and substitutions,
respectively, in that particular lattice). Together the parameters I, D
and S determine the cost that must be added to the original acoustic
cost distribution. The problem of finding optimal symbolic costs is
greatly alleviated by restricting the parameters to those regions in
the cost space that avoid these distributions to become disjoint.

2.4. Decoding accuracy
We investigated how the costs for insertions, deletions, and
substitutions affect the likelihood of finding the phone sequence
that corresponds to the correct word sequence (as defined by the
orthographic annotation), and how these optimal costs relate to the
acoustic costs in the phone lattice. The decoding accuracy is
defined as the proportion of phone lattices with the following
property: after composition with the lexical FST, the correct lexical
phone sequence is the cheapest among all lexical phone sequences.
This property will guarantee that the lexical search will be able to
correctly recognize all words in the entire utterance.

The search is actually three-dimensional, but the contour plot in
Figure 1 shows an example of the behavior of the decoding
accuracy as a function of the insertion penalty (along the x-axis)
and the substitution penalty (along the y-axis). In the figure, the
deletion penalty is constant (2.5).

The performance of 0.68 (68 percent of the lattices had the
correct word sequence corresponding to the cheapest path) was
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obtained for substitution, insertion and deletion penalties of about
3.5, 2.4, and 2.5, respectively. In other words, for 68% of the
graphs, the correct lexical phone sequence was the cheapest among
all lexical phone sequences. For these ‘cheapest sequences’, the
proportion of symbolic mismatches compared with the path length
depends on the utterance and varies from 18 to 41 percent. For
comparison: using a similar technique, [1] reports an average of
26.6 percent phone mismatches on phonetically labeled manually
transcribed spontaneous speech. The performance difference can,
at least partially, be explained by the fact that we only searched for
canonical paths in the lattice, whereas it is evident that the actual
pronunciation often deviated from the canonical. If the phone
recognizer would detect the ‘exact’ sequence of phones in a careful
manual transcription, the minimum mismatch rate for read speech
would be about 10%.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

insertion penalty value

su
bs

tit
ut

io
n 

pe
na

lty
 v

al
ue

decoding accuracy as function of insertion and substitution penalty value

 0
.3

 0.3

 0.3

 0.3

 0
.4

 0.4  0.4

 0
.4

 0
.5

 0.5  0.5

 0
.5

 0.5

 0.5

 0.6
 0.6

 0
.6

 0.6

 0.6

0.65

0.65

0.65

Figure 1. Decoding accuracy as a function of the insertion
penalty (along the x-axis) and the substitution penalty
(along the y-axis). The horizontal and vertical dashed lines
indicate the average acoustic ‘penalty’, i.e. the difference
between acoustic score of competing phones.

The optimal symbolic penalties for insertions and deletions are a
factor of 1.2 larger than the acoustic mismatch costs, while the
substitution penalty is 1.4 to 1.5 times larger than the insertion and
deletion penalties. We observe that these ratios are independent of
the acoustic costs: since all numerical operations for the total cost
along paths are linear, the symbolic penalties scale with the
acoustic costs and, thus, the ratios are constant.

3. DATA-DERIVED PHONE-PHONE SUBSTITUTION
COSTS

3.1 Minimum Bayesian Risk decoding
In the previous section, the optimal mismatch costs were found by
a systematic search that was motivated by the structure of the
distribution of path costs. One of the evident drawbacks of such a
method is the fact that all substitutions are penalized by the same
amount, independent of the phonetic or acoustic distance between
the source and the target phone. However, the use of many more
parameters becomes prohibitive.

Equation 1 provides the mathematical formulation for the
optimization of the probability to find the correct phone path in the
phone lattice according to the SpeM decoding framework. The
signal X is given, P is the hypothesized lexical path, and Q is a
path variable running over the set of all paths available in the
phone lattice. The term -log(P(X|Q)) denotes the minus log
probability (acoustic score) in the phone lattice, while d(P, Q)
denotes the sum of all penalties for symbolic mismatches between
the phone sequences P and Q.

))},()|(log(({minminarg QPdQXPP QPc +−= (1)

Shafran & Byrne [10] present a procedure for solving a similar
decoding problem. Their approach is based on using a Minimum
Bayes Risk (MBR) criterion given by Equation 2:

�=
Q

Pc QPQXPQPCP )()|(),(minarg (2)

in which X, Q and P denote the signal, a path variable (running
over all phone sequences in the lattice), and the resulting path,
respectively. C(P, Q) denotes the cost of rewriting the path Q into
the path P. Their aim is to automatically learn the substitution
costs C(P, Q) from data.

It can be seen that Equations 1 and 2 have a similar structure:
the minQ is replaced by a sum, and d(P, Q) can be interpreted as
C(P, Q) (both these terms are basically edit distances). Equation 1
aims at optimizing the probability of finding the correct lexical
path in the lattice, while Equation 2 supports the search for optimal
penalty values that are valid across all lexical paths in the lattice.
In order to contrast the two approaches, we have defined an
iterative scheme using Equation 2 in order to estimate the cost C(P,
Q) as follows:

(1) Decode the data using the current model (acoustic
models and current parameter settings that define
C(P,Q))

(2) Compute alignments between the hypothetical
transcription from (1) and reference transcription

(3) Compute the updated C(P, Q) by setting C(P, Q) equal
to -log(P(P | Q))

Here, C(P, Q) refers to the weighted edit distance, i.e. the
minimum weighted number of modifications to be applied to the
phone path Q to obtain the phone path P. The scheme was applied
using the same speech data as in Section 2. To increase robustness
of the algorithm, we did not introduce new substitution cost
parameters for each phone-phone combination – instead,
substitution costs were trained for all combinations of five broad
phonetic manner classes: plosive (stop), fricative, liquid, nasal, and
(semi)vowel. The initial choice for bootstrapping these 25
substitution costs is given in Table IIa. This table is inspired by the
optimal substitution penalty found by the SpeM decoding. Table
IIb illustrates the result of applying the iteration scheme on all
phone lattices of the training set after the third iteration. The third
iteration was chosen since, from this iteration on, all matrix entries
differ less than 1 percent compared with the values obtained after
the third iteration. The evolution of the decoding accuracy (‘Acc’)
for the first 5 iterations is presented in Table III. This shows that
the Shafran-Byrne scheme is potentially able to outperform the
SpeM search due to the feasibility of training more fine-grained
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mismatch costs – something that was not feasible with the SpeM
approach.

Table II shows the penalty values in the same scale as used in
the previous section. That means that they can be compared with
2.1, the average acoustic cost for a symbolic mismatch.

3. DISCUSSION AND CONCLUSIONS

The balance between acoustic costs and symbolic mismatches is
important for the performance of a multi-pass speech decoding
system. In this paper, we discuss two approaches for finding the
optimal balance, one in the context of the SpeM decoding and one
based on Minimum Bayesian Risk (MBR) decoding. The
underlying mathematical formulation of the two methods is very
similar. The advantage of the SpeM decoding is that the structure
of the search space is known in terms of the three penalty values:
the cost distribution is an overlay of smaller distributions that are
spaced apart according to the symbolic mismatch values. This
structure simplifies the optimisation, because it allows the
restriction of the search to specific sub-regions. We have shown
that the MBR approach is able to train more refined categories of
mismatch costs (by distinguishing more phone classes) methods.

Table II (a, top): Initial substitution cost matrix. (b, bottom): Cost
matrix after three iterations.

(a) Plos Fric Liq Nas Vowel
Plos 0.0 3.5 3.5 3.5 3.5
Fric 3.5 0.0 3.5 3.5 3.5
Liq 3.5 3.5 0.0 3.5 3.5
Nas 3.5 3.5 3.5 0.0 3.5
Vowel 3.5 3.5 3.5 3.5 0.0

(b) Plos Fric Liq Nas Vowel
Plos 0.4 3.2 3.6 4.0 5.1
Fric 3.0 0.6 3.5 3.6 3.9
Liq 3.1 3.5 1.1 2.3 2.8
Nas 3.6 3.9 2.2 0.9 3.2
Vowel 5.2 3.9 2.6 3.4 1.4

Table III Decoding accuracy in percent before the optimization
(Iteration 0) and after a number of iteration steps (Iteration 1 to 5)

using the MBR optimization scheme.

Iteration 0 1 2 3 4 5
Acc (%) 68 71 71 72 72 72

It is interesting to observe that the costs trained for within-broad-
phonetic-class substitutions by the MBR approach are larger than
0. One might expect them to be identically zero. However, these
positive values can be explained by the fact that these substitution
costs also account for substitutions between non-equal plosives,
non-equal nasals (e.g. C(/p/, /q/), C(/m/, /n/) etc..

It is expected that further improvements can be obtained by
allowing more fine-grained distinctions in the cost function, e.g. by
applying phone-phone dependent substitution costs. Focus of
research in the near future will be on the relationship between the
acoustic costs, symbolic mismatch penalties, and the decoding of

speech in terms of lexical tokens, applied on larger corpora of read
speech and on spontaneous speech.
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