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ABSTRACT 

Current approaches to semi-supervised incremental learning prefer 

to select unlabeled examples predicted with high confidence for 

model re-training. However, this strategy can degrade the classifi-

cation performance rather than improve it. We present an analysis 

for the reasons of this phenomenon, showing that only relying on 

high confidence for data selection can lead to an erroneous esti-

mate to the true distribution when the confidence annotator is 

highly correlated with the classifier in the information they use. 

We propose a new data selection approach to address this problem 

and apply it to a variety of applications, including machine learn-

ing and speech recognition. Encouraging improvements in recogni-

tion accuracy are observed in our experiments. 

1. INTRODUCTION 

Semi-supervised learning has elicited growing interests in various 

research fields and many novel approaches have been proposed 

with promising improvement of performance. Generally speaking, 

these approaches can be grouped into two categories: generalized 

EM [1] and incremental learning [2]. Recent research [3] has 

pointed out that generalized EM may generate a large estimation 

bias when model assumptions are violated, and consequently dete-

riorate classification performance. This conclusion is quite dis-

couraging since the situation it describes is very common in speech 

recognition for which the Gaussian Mixture based acoustic models 

are only rough approximations to the true underlying distribution. 

There is evidence suggesting that semi-supervised incre-

mental learning plus a reasonable data selection strategy, i.e. self-

training or co-training, can partially address the degradation prob-

lem [4][5]. Same as generalized EM, incremental learning is also 

performed in an iterative fashion. However, instead of exploiting 

all of the unlabeled examples, in each iteration of incremental 

learning only part of them are selected for model training in accor-

dance with some confidence metric. There is a notable characteris-

tic shared by many incremental learning approaches: the selected 

unlabeled examples must be predicted with high confidence. A 

first glance gives us the impression that this strategy is reasonable, 

since a high confidence score usually implies that the correspond-

ing classification result is correct. Expanding the training set with 

correctly classified examples should therefore improve recognition 

accuracy. However, counter-examples have been proposed to chal-

lenging this concept. For instance, in semi-supervised acoustic 

model training, [6][7] reported that the best performance is 

achieved by combining transcribed data with part of un-transcribed 

data which hypotheses are scored with low confidence. 

This paper attempts to investigate this important phenome-

non. The analysis we provide in the next section shows that confi-

dence based data selection strategy can also lead to an erroneous 

estimate of the underlying distribution ),( cxP , especially in the 

case that the confidence annotator is constructed on the information 

supplied by the classification model. We thus propose a new data 

selection approach for semi-supervised learning in Section 3, 

which requires the examples to be selected across the entire fea-

ture space complying with ),( cxP . To implement the new ap-

proach for acoustic model training, we also present a vector con-

version scheme that allows K-Means clustering to be performed 

over the utterance set. Experimental results obtained from a variety 

of applications will be discussed in Section 4. 

2. ANALYSIS ON CONFIDENCE BASED DATA 

SELECTION 

We consider the following scenario of semi-supervised incremental 

learning in the analysis of data selection approaches. An initial 

model 
0λ  is learned from the labeled set and then applied to clas-

sify the unlabeled examples. A confidence metric );( xcf  is used 

to provide each unlabeled example with a score measuring the 

likelihood of correctness for the class label given by 
0λ . The unla-

beled examples with high confidence score are added to the la-

beled set for training a new model 
1λ . The process repeats until all 

of the unlabeled examples are exhausted or some halting criterion 

is met. 

One example of the confidence metric is the posterior word 

probability, one of the most effective features to estimate the rec-

ognition accuracy in continuous speech recognition [8]. Eq. 1 

shows its definition in which the hypothesis space is restricted to a 

word lattice. 
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where w  is the questioned word with starting time 
st  and end time 

et , and h  denotes a path in the word lattice. 

Posterior word probability demonstrates a common phenome-

non in the design of confidence metrics. That is, the confidence 

annotator is primarily constructed on the basis of the information 

supplied by the classification model. For example, in Eq. 1, the 

joint probability ),( xhPλ  is calculated from the acoustic score 

)]|(log[ hxPλ  and language model score )](log[ hPλ  that are pro-

vided by the decoding process. Therefore, the selection of unla-

beled examples with high confidence score often results in only the 

examples that match well to the current model being picked, and 

re-training with such examples will become a process that rein-

forces what the current model already encodes [6]. Moreover, if the 

estimation bias exists in the initial classification model, it’s likely 

that the bias will be enhanced rather than eliminated during itera-

tion. 

Solely relying on confidence metric for data selection will also 

lead to other problems. We designed a 1-dimension 3-class classi-

fication experiment to illustrate this observation. Suppose the three 

classes have the same prior probability, that 

)()()( 321 cPcPcP == , and the example x  of each class is gener-

ated from Gaussian distribution )1,(~)|( ii NcxP µ . The mean 
iµ
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is set to 0, 2 and 4, respectively. To simplify the discussion, we 

assume the class prior and standard deviation have been known to 

us. Our task is to learn 
iµ  for the three classes. In our experiment, 

a total of 300 examples are generated using )( icP  and )|( icxP .

We randomly pick 10% of them as the labeled set while the re-

maining as the unlabeled set. Posterior probability )|( xcPλ  esti-

mated from current model λ  is adopted as the confidence metric. 

In semi-supervised learning, 10% of unlabeled examples with 

highest confidence score are added to the labeled set for model 

refining. 

Figures 1 to 3 illustrate the learning process. Figure 1 plots the 

Gaussian density functions trained from labeled examples com-

pared with the true distribution. Due to the scarcity of labeled data, 

the learned functions obviously deviate from the true concept. In 

Figure 2, the dashed line depicts the behavior of the posterior 

probability based confidence metric, while the stars on the bottom 

denote the unlabeled examples being selected for their high confi-

dence score. Figure 3 shows the new PDF learned from the combi-

nation of labeled examples and selected unlabeled examples.  
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Figures 1~3 Illustration of confidence based data selection 

Two important phenomena are revealed in this experiment. 

First, the unlabeled examples being selected reside only in certain 

regions of the feature space, i.e. the leftmost and rightmost area as 

in Figure 2, rather than distribute globally complying with the 

distribution )(xP . Moreover, there is no example picked for some 

class, i.e. class 2 in this experiment, since most of its examples 

locate in the area with relative low confidence score. Apparently, 

learning with the selected unlabeled examples, even though their 

assigned class labels are correct, will result in an erroneous esti-

mate of the true distribution. 

3. NEW DATA SELECTION APPROACH FOR SEMI-

SUPERVISED INCREMENTAL LEARNING 

The toy experiment described in the previous section suggests that 

relying solely on confidence metrics for unlabeled data selection is 

not a risk-free strategy, especially in the case that the confidence 

annotator is based on the information provided by the classification 

model. One solution is to employ external information not used by 

classification model to build an independent confidence annotator. 

Co-training [2] is a successful example of this idea. However, not 

every real-world application can afford the feature division as re-

quired by co-training. 

We propose a new data selection principle to address the prob-

lems illustrated in the toy experiment: unlabeled examples are not 

selected across the entire space, and no example is selected for 

certain class. The approach is shown as follows. 

Initialization:

1. Assign class label to each unlabeled example using current 

model λ .

2. Measure the certainty of each classification with confidence 

metric );( xcf .

Feature space partition:

3. Partition feature space X  into K sub-spaces 
KDDD ,...,, 21

with a reasonable clustering algorithm, i.e. K-means. 

4. Let  
l

kn : number of labeled examples clustered to 
kD .

u

kn : number of unlabeled examples clustered to 
kD .

l

ckn ,
: number of labeled examples belonging to class c  and 

clustered to 
kD .

u

ckn ,
: number of unlabeled examples classified to class c  and 

clustered to 
kD .

5. Compute prior probability for each cluster 
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6. Estimate class probability for each class and cluster 

Z

DcPDcP
DcP kukl

k
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where 
l

k

l

ckkl nnDcP ,)|( =     (4) 

u

k

u

ckku nnDcP ,)|( =     (5) 

α  is a factor balancing )|( kl DcP  and )|( ku DcP , β  is a 

small constant which increases a little bit of  the probability of 

less observed class, and Z  is a normalization factor chosen to 

make  )|( kDcP  a probability function. 

Data Selection:

7. Select cluster 
kD  according to probability )( kDP .

8. Within cluster 
kD , select class c  according to probability 

)|( kDcP .
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9. For unlabeled examples clustered to 
kD  and classified as c ,

add the one with the highest confidence score to the labeled 

set. 

10. Repeat 7 until enough unlabeled examples are selected. 

The major difference between the traditional approach and our 

new approach is that we use not only confidence score as one of the 

necessary criteria, but also require that the selection comply with 

the underlying distribution ),( cxP , which can be decomposed as 

)|()( xcPxP . In our approach, )(xP , the distribution of examples 

in feature space, is approximated by )( kDP , the prior probability 

of clusters, with the assumption that if a cluster is small enough, 

the examples belonging to it will have the same )(xP . On the 

other hand, the posterior probability )|( xcP  is modeled by the 

probability )|( kDcP , which is estimated by linearly combining 

)|( kl DcP  and )|( ku DcP . Moreover, a smoothing factor β  is 

added to the estimation so that the examples in the class with less 

observations also have chance to be selected for model re-training. 

4. EXPERIMENTS 

To test the effectiveness of the proposed data selection approach 

for semi-supervised incremental learning, we conducted a series of 

experiments on a variety of applications including classic machine 

learning problems and continuous speech recognition in a meeting 

environment. 

4.1. Semi-Supervised Multi-Class Classification 

Our new approach is first tested on three often referenced bench-

mark datasets in machine learning research: image-segmentation 

(image), letter-recognition (letter), and optical-recognition-of-

handwritten-digits (optdigits), which can be downloaded from the 

UCI machine learning repository. The last two datasets have pre-

defined training/test split given in their documents: 16000/4000 

examples for letter and 3823/1797 examples for optdigits. For 

image, we use the first 2000 examples as the training set and the 

remaining 310 as the test set. The labeled data are further sepa-

rated from the training set by randomly picking a certain portion of 

examples along with their labels. Three labeling rates are used in 

our investigations including 5%, 10% and 20%. To erase the un-

certainty caused by random selection, experiments are repeated for 

100 times for each labeling rate. The overall means and standard 

deviation of test accuracy are reported as the final performance. 

Our experiments use Gaussian Mixtures as the base classifier, K-

Means as the clustering method, and Negative Entropy [9][10] as 

the confidence metric which definition is as follows. 

=

=
M

m

mm xcPxcPxne
1

)|(log)|()( λλ
  (6) 

Our new data selection approach is then compared with three 

other learning methods: (1) supervised training on the labeled set, 

(2) semi-supervised EM using all the unlabeled examples, and (3) 

traditional incremental learning that always selects high confidence 

data. Experimental results are reported in Table 1, in which the 

best result for each dataset and labeling rate is marked in boldface 

type. Our new approach works very well in the experiments, which 

consistently performs better than or as well as the best of the other 

three methods. 

4.2. Semi-Supervised Meeting Recognition 

We also applied the new data selection approach to semi-

supervised acoustic modeling for the ICSI meeting [CMU1]domain 

[11]. The dataset has a total of 75 meetings, accounting for 60 

hours of raw speech data. We use 10 meetings as the labeled set 

for initial acoustic training, 61 meetings as the unlabeled set for 

semi-supervised learning, 3 meetings as the hold-out set for recog-

nizer tuning, and 1 meeting (containing about 7500 words[CMU2])

as the test set. A 13-dimension MFCC feature vector is computed 

for each frame and then expanded to 39-dimension by adding delta 

and delta-delta coefficients. The phone set contains 49 basic pho-

nemes. In context dependent training stage, these phonemes are 

transformed to triphones and then tied together to make 2000 

senones. Each senone is modeled using a mixture of 32 Gaussians, 

giving a total of 64K Gaussians for acoustic modeling. 

We employ a neural network based confidence annotator to 

measure the correctness of hypothesis. The inputs to the neural 

network consist of four features representing both language model 

and acoustic model information: LM-backoff-mode, posterior-

utterance-probability, posterior-word-probability and posterior-

frame-probability, while the output is trained to approximate the 

word accuracy of each hypothesis. We previously found [7] 

[CMU3]that the confidence score given to the questioned hypothesis 

is generally proportional to its word accuracy; that is, high confi-

dence score indicates high accuracy and vise versa. In our experi-

ments, data selection is performed on the utterance level so that the 

entire utterance is kept or rejected depending on its confidence 

score. 

To apply the new data selection approach to semi-supervised 

acoustic model training, an obstacle has to be addressed: how to do 

clustering in a training set composed of utterances. For continuous 

speech, the length of utterance in terms of frame, phoneme or word 

is flexible. Therefore, utterances need be converted to vectors with 

fixed size so that K-Means algorithm can be performed to partition 

the utterance space. Our solution is proposed as follows. Suppose 

the system has a phone set with L phonemes that 

},...,,{ 21 LqqqQ = , and the utterance to be converted consists of T

frames and N phonemes, where the phoneme can be obtained by 

analyzing its transcripts or decoding hypothesis. 

Utterance vector conversion:

1. Perform K-Means algorithm in frame vector space, partition-

ing the space into M clusters },...,,{ 21 Mϖϖϖ .

2. Convert the T-frame utterance ],...,,[ 21 Txxxu = into a M-

dimension vector ],...,,[ 211 Mv γγγ=  where 

Txofnumber mtm ϖγ ∈=    (7) 

3. Convert the N-phoneme utterance ],...,,[ 21 Nyyyu =  into a L-

dimension vector ],...,,[ 212 Lv ηηη=  where 

Luqofnumber ll ∈=η    (8) 

4. Concatenate 
1v  and 

2v  to make a L+M dimensional vector v

representing the utterance u .

By converting utterances into L+M dimensional vectors, the K-

Means algorithm can be applied to partition the utterance space 

into clusters },...,,{ 21 KDDD . In our experiments we no longer 

estimate )|( kDcP  since the number of possible hypothesis for an 

utterance could be infinite. Instead, we include the phoneme in-

formation in the utterance vector with the expectation that the class 

distribution can be implicitly modeled. Correspondingly, the selec-

tion of un-transcribed utterance within a cluster 
kD  will only de-
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pend on the confidence score. Please note utterances are still se-

lected across the entire feature space with the help of )( kDP .

Acoustic Model Trained from Word Error Rate 

Transcribed Data 47.31% 

Transcribed + Un-transcribed Data 44.41% 

Table 2 Training with or without un-transcribed data 

The initial acoustic model is trained using the 10 transcribed 

meetings. All the un-transcribed speech data are decoded with the 

initial model, and then appended to the transcribed set, along with 

their hypotheses, to train a new acoustic model. Table 2 presents 

the word error rate of these two models. 

We further compare the new data selection approach with tradi-

tional approaches that use only  high confidence scores to select 

utterances. In each iteration of incremental training, 20% of the un-

transcribed speech data, measured by the number of frames, are 

selected to augment the current training set. Figure 4 plots the 

word error rates of the two approaches. 

Figure 4 shows that the new approach is consistently superior to 

traditional method. When the first 20% un-transcribed are added to 

the training, our approach reduced the word error rate to 44.36% 

from 47.31%, representing a relatively 6% gain in performance, 

and began to outperform the model trained using all the un-

transcribed data. In contrast, traditional method only reduced the 

error rate to 46.89% with the same amount of data. This indicates 

that the most suitable un-transcribed data for model training cannot 

be identified if we ignore its distribution in feature space. Both 

approaches reach their best performance, 43.18% and 44.02% 

respectively, when using 60% of the un-transcribed data. 
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Figure 4 Comparison of two data selection methods with different 

amount of un-transcribed data 

5. CONCLUSION 

This paper investigates data selection methods used in semi-

supervised incremental learning. Our analysis shows that tradi-

tional methods can lead to biased estimates, especially in the case 

where the confidence annotator is not independent of the classifica-

tion model. We proposed a new data selection approach that in 

addition to using confidence score as the criterion to seek correctly 

classified examples, but also attempts to make the selection com-

ply with true distribution. The effectiveness of the new approach is 

demonstrated by experimental results on a variety of machine 

learning and speech recognition problems. 
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Training on Labeled Set Semi-Supervised EM High confidence Based 

Incremental Learning 

New Data Selection 

Approach 

Datasets Labeling 

Rate 

Acc. % (Mean ± Dev.) Acc. % (Mean ± Dev.) Acc. % (Mean ± Dev.) Acc. % (Mean ± Dev.) 

5% 76.69±1.42 75.08±1.38 70.45±1.45 77.86±1.25 

10% 82.97±0.65 81.17±0.56 79.08±0.62 83.13±0.58 

Image 

20% 84.95±0.49 83.06±0.46 81.40±0.58 85.53±0.50 

5% 63.95±0.92 64.08±0.98 67.19±0.97 68.20±0.94 

10% 73.77±0.80 74.85±0.88 77.38±0.88 78.33±0.67 

Letter 

20% 78.01±0.73 79.23±0.79 82.64±0.65 82.91±0.62 

5% 86.63±1.93 88.11±1.77 86.32±1.75 88.51±1.54 

10% 89.60±1.22 90.08±1.22 88.92±1.32 90.56±1.05 

Optdigits 

20% 92.34±0.90 92.42±0.80 91.98±0.92 93.31±0.81 

Table 1 Comparative study of four algorithms in multi-class classification 
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