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ABSTRACT

We present an approach to general multi-stream recognition uti-
lizing multi-tape finite-state transducers (FSTs). The approach is
novel in that each of the multiple “streams” of features can rep-
resent either a sequence (e.g., fixed- or variable-rate frames) or a
directed acyclic graph (e.g., containing hypothesized phonetic seg-
mentations). Each transition of the multi-tape FST specifies the
models to be applied to each stream and the degree of feature stream
asynchrony to allow. We show how this framework can easily rep-
resent the 2-stream variable-rate landmark and segment modeling
utilized by our baseline SUMMIT speech recognizer. We present
experiments merging standard hidden Markov models (HMMs) with
landmark models on the Wall Street Journal speech recognition task,
and find that some degree of asynchrony can be critical when com-
bining different types of models. We also present experiments per-
forming audio-visual speech recognition on the AV-TIMIT task.

1. INTRODUCTION

Most commonly, speech recognition systems utilize a single stream
of features, often a fixed-rate sequence of observation vectors (e.g.,
MFCCs and their derivates) modeled using hidden Markov models
(HMMs). Extensions to this traditional HMM approach include seg-
mental (e.g., whole-phone) modeling [1, 2], multi-stream sub-band
modeling [3], multi-stream multi-rate modeling [4, 5], articulatory-
inspired modeling [6, 7], multi-modal recognition [8], and audio-
visual speech recognition [9, 10, 11], among others. Many of these
multi-stream approaches vary in how often information from the dif-
ferent streams is integrated (e.g., every state, every phone or sylla-
ble boundary, or at the end of the utterance) and whether the initial
search utilizes all streams or rather additional streams are integrated
in a multi-pass approach.

Our SUMMIT speech recognition system [2] has long integrated
two feature streams, landmarks and segments, and integrated them
at phone boundaries in an integrated search. At such phone bound-
aries, determined automatically by the search, the landmark and seg-
ment feature streams are fully synchronized in time. When perform-
ing some initial experiments combining a traditional HMM with our
landmark and segment models, we found that synchronization with
the HMM was an issue. We found that our landmark/segment sys-
tem preferred different phone boundaries as compared to a context-
dependent HMM, and thus desired a framework to explore asyn-
chrony in addition to multiple feature streams. Others have found
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that context-dependent HMMs prefer phonetic alignments that may
not well match transcriptions or other models, including context-
independent HMMs [12], and thus allowing some degree of asyn-
chrony between HMMs and other models may be critical to success-
ful integration. In this paper we present our multi-stream framework
that utilizes a multi-tape finite-state transducer (FST) to express how
multiple feature streams are combined and the allowable asynchrony
between them at different parts of the search.

Related work includes multi-stream recognition by HMM re-
combination by Bourlard, Dupont, et al. [3, 9], in which HMMs
representing different streams are allowed to evolve independently
until encountering special synchronization states. The multi-rate
HMM framework of Çetin and Ostendorf [5] utilizes graphical mod-
els and allows different streams to operate at different rates. The
multi-modal approach of Johnston and Bangalore et al. [8] jointly
recognizes gestures and speech using multi-tape FSTs, with integra-
tion of the modalities occurring at the end of the utterance (either
two passes or search through recognition lattices computed on each
modality).

In Section 2 we start with background on our pre-existing 2-
stream system and present our new multi-stream framework. In Sec-
tion 3 we report on experiments run with the new framework, in-
cluding integration with traditional HMM models and audio-visual
speech recognition.

2. MULTI-STREAM, MULTI-TAPE FST FRAMEWORK

In this section we begin with a description of the 2-stream modeling
of landmarks and segments utilized by our baseline speech recog-
nizer and then generalize this to arbitrary feature streams allowing
asynchrony using a multi-tape FST representation.

2.1. Landmark & Segment Modeling: 2 Streams

Our baseline speech recognizer [2] has long made use of both land-
mark and segmental acoustic features. Landmarks are proposed with
the goal of having them occur at phone boundaries. Segments are
proposed with the goal of having them span whole phones. In prac-
tice, both landmarks and segments are over-generated, allowing the
recognition search to choose the optimal phonetic segmentation. For
landmarks this means that some will be proposed internal to phones.
For segments this means that a directed acyclic graph is proposed to
cover all hypothesized segmentations of the utterance into phones.

The landmark models and the segment models operate on sep-
arate feature streams that are both derived from the same set of
fixed-rate (5ms) MFCC features. The landmark feature stream is
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Fig. 1. Sample 2-stream feature space. Stream 1 in (a) consists of
variable-rate landmark features, with a feature vector f(1)i and time
t
(1)
i associated with each landmark i. Stream 2 in (b) consists of

segments connecting pairs of landmarks, with a feature vector f(2)j

associated with each segment j and time t
(2)
k associated with each

segment boundary k.

ε:s:p1

li:ε:p2

lt:ε:p2

Fig. 2. Topology of 2-stream landmark/segment phonetic model.
This combines a 2-state landmark HMM (lt for transition model and
li for internal model) operating on stream 1 with a whole-segment
model s operating on stream 2.

in general a variable-rate sequence of fixed-length feature vectors,
much like those used in a variable-rate HMM [5]. The segment
feature “stream” isn’t a stream per se but rather a directed acyclic
graph, in which each arc represents a time range with its own fixed-
length feature vector. Thus, this system operates on two streams,
one a variable-rate sequence of landmarks and the other a variable-
rate graph of segments. Figure 1 displays an example of two time-
aligned feature streams, with the top showing landmarks and the bot-
tom showing segments.

In the landmark feature stream, each phone is modeled with a
“transition” model lt at the phone-initial landmark, and an “internal”
model li at each phone-internal landmark, if any. In the segment fea-
ture stream, each phone is modeled by a single whole-phone model
operating on the fixed-length feature vector. We make use of “an-
tiphone” models to account for the overlapping segments [2]. In
general, the landmark models (transition and internal) and segment
models are all context-dependent. At phone boundaries, the land-
mark and segment feature streams are fully synchronized in time
(i.e., t(1) = t(2)).

2.2. New Framework

The modeling outlined in this previous section, particularly the rela-
tionship between segments and landmarks, is hardwired in our base-
line system. We now present a generalization of this baseline model
allowing arbitrary feature streams and asynchrony between them in
an integrated search.

In general, we will have F feature streams: each could be a
graph containing potential time transitions. At any given point in the
search, we will be at some F -tuple (t(1), t(2), . . . , t(F )) representing
the current time (or state) across all feature streams. We call such a
time F -tuple a “hypertime” t.

To do this, we make use of a multi-tape FST representation of
our search space. In addition to encoding weights or probabilities for
different pronunciations and word sequences, it also encodes allow-
able transitions through the F feature streams, which models to ap-
ply to each, and when the search synchronizes the features streams.
We have chosen to encode these multi-stream search characteristics
into an FST. For F streams, a transition label will be of the form

m(1) : m(2) : . . . : m(F ) : p : o / w .

Here, o and w represent word labels and weights (e.g., −log proba-
bilities), respectively.1 Each m(f) represents a model identifier for
feature stream f , or ε if there is none. p identifies a predicate to
be applied to the hypertime t, controlling the degree of asynchrony
(in time, as opposed to in states) between the feature streams at any
given point in the search, or it too can be ε for no predicate.

To make a transition within the FST and hypertime space from
t1 → t2, the presence of the m(f) model identifiers constrains the
possible hypertime transitions. If m(f) �= ε (i.e., model present for
stream f ), then feature space f must make a transition: t

(f)
2 �= t

(f)
1 .

Otherwise, there will be no transition: t
(f)
2 = t

(f)
1 . In addition, the

predicate p on the transition must evaluate to true for the destination
hypertime, p(t2) = 1 if a joint FST and feature space transition is
to take place.2

When an FST transition is taken, the score is updated by lin-
ear combination of the log probabilities provided by the individual
feature classifiers. Note that this is a substantial difference from
Bourlard et al.’s HMM recombination framework [3] in which the
stream scores are integrated only at synchronization states. Earlier
integration has the potential advantage that the different streams can
contribute to beam pruning earlier in the search, although it does
limit the form of feature score combination possible.

We use a dynamic-programming search to find the best path
through the FST and through the F feature spaces. We perform
a “time”-synchronous beam search starting at the initial hypertime
and proceed to the final hypertime, visiting intermediate hypertimes
in order.3 At each hypertime, we perform score-based and count-
based beam pruning of the active nodes (FST states). In addition, we
can perform beam pruning across all hypertimes that share the same
t(1), generally the feature space with the finest time resolution. Ig-
noring the synchronization predicates, this search could be viewed as
computing the best path(s) through a multi-tape join operation [13]
between the multi-tape FST above and the multi-tape cross prod-
uct of feature stream FSTs, where each feature stream FST contains
transitions with a model label and model score (i.e., the weight).

In our initial implementation, we have been training the mod-
els for individual streams separately and then combining them in
this multi-stream framework. Any transition weights used for the
individual models are linearly combined in the same way individual
model scores are combined. We believe it would be straightforward
to train the models jointly as others have done in multi-stream sys-
tems.

2.3. Example: Landmarks & Segments

Figure 2 shows the FST representing a phone model implementing
the type of modeling used by the baseline recognizer. Tape 1 rep-
resents models for the landmark feature stream, tape 2 models for

1Figures in this paper have been simplified and do not show the o and w
components on FSTs.

2An obvious extension would be to use a probabilistic predicate.
3The particular ordering used is not important. We used lexicographically

sorted order for convenience.
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Fig. 3. (a) FST jointly modeling fixed-rate frames on stream 1 and
variable-rate landmarks on frame 2. It is a combination of the in-
dividual stream FSTs shown in (b) and (c). Other constructions are
possible, including a full Cartesian product of the state spaces (b)
and (c), but (a) is the topology used in our experiments.

the segment feature stream, and tape 3 references to hypertime pred-
icates.

Predicate p1 enforces the degree of asynchrony allowed at phone
boundaries: p1(t) = |t(1) − t(2)| ≤ τ . For the baseline system
τ = 0, but in this framework p1 allows us to relax this synchrony
constraint. Predicate p2 is used to keep feature stream 1 from getting
too far ahead of stream 2: p2(t) = t(1) ≤ max reachable(t(2))+τ ,
where “max reachable” represents the maximum finishing time of a
segment starting at t(2), and improves efficiency by eliminating dead
ends in the search.

2.4. Example: Frames & Landmarks

Figure 3 shows an FST representing a 2-stream model combining a
3-state fixed-rate frame HMM and a 2-state variable-rate landmark
HMM. In this case we have interleaved the two models to produce
the 2-stream FST. This FST allows partial-phone frame and land-
mark scores to be integrated early and compete within the beam
search. Other topologies are possible, including the full Cartesian
product of the individual stream FSTs. However, unless models
are sensitive to the state of other streams (e.g., landmark model
used depends on state of frame HMM), such an expansion offers
no advantage within our framework. The synchronization predicate
is p1(t) = |t(1) − t(2)| ≤ τ , meaning the frame and landmark
streams are allowed to be out of sync by up to τ , both between and
within phones. As demonstrated in the next section, we have found
τ = 95ms to work well.

3. EXPERIMENTS

We have experimented with the multi-stream framework on two dif-
ferent tasks. One is the Wall Street Journal (WSJ) speech recognition
task, and the other is an audio visual speech recognition task on the
AV-TIMIT corpus [14].

3.1. The WSJ Task

The WSJ corpus consists of read speech of sentences from the Wall
Street Journal newspaper. We chose to do the standard H2-C2 task
on the Eval’92 test set [15, 16]. For training, we used the WSJ SI84
corpus. The training set contains 14 hours of speech with 7,138 sen-
tences. The language model is a bigram with a decoding vocabulary

Acoustic Models Test WER
Landmark Models 10.4%
HMM Models 8.8%
Landmark + HMM Models 8.0%

Table 1. Word error rates (WER) for variable-rate landmark models,
fixed-frame-rate HMMs, and their combined models.
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Fig. 4. WERs and decode time vs. degree of asynchrony.

of 5,000 words. The Eval’92 test set has 330 sentences with 5,353
words with 0.29% OOV rate.

Two baseline systems were used for this WSJ task. The first
baseline system is a standard HMM system. The 42-dimensional
feature vector consists of 14-dimensional MFCCs, their deltas, and
their delta-deltas, all computed with a fixed 10ms frame shift. The
3-state HMM acoustic models have 3,347 clustered triphone models
with 26,742 gaussians. The word error rate (WER) for the base-
line HMM system is 8.8%. The second baseline system uses a 50-
dimensional landmark feature vector computed at hypothesized land-
mark locations. The landmark features can be thought of as having
a variable frame rate and contain various MFCC averages on both
sides of the landmark. The average landmark spacing is approxi-
mately 30ms. The baseline landmark acoustic models had 993 clus-
tered diphone models with 13,496 gaussians. The WER using the
landmark models is 10.4%.

The multi-stream decoder provides a flexible framework to com-
bine these two baseline feature streams. The multi-tape FST repre-
sentation of the phone model used for these two streams is the same
one illustrated in Figure 3(a).

Table 1 summarizes the results in terms of WERs of the base-
line landmark models, HMM models, and their combined models.
The combined acoustic models achieved a WER error rate of 8.0%,
which improves from either baseline models alone. A development
set was used to optimize the weighting of the landmark and HMM
scores.

The degree of asynchrony allowed in the time predicates has a
significant impact on performance in terms of WER and computa-
tion time. In general the landmarks and the HMM features are not
aligned in time, and a strict requirement of all the phonetic bound-
aries are synchronized at the same locations will mostly likely not
produce any complete hypothesis. Figure 4 shows how the WER and
the computation time changes as the degree of asynchrony varies.
When the asynchrony between the two streams is at least 95ms (τ ≥
95ms), the WER does not improve and the computation time in-
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Acoustic Models Test WER
Speech Landmark & Segment 2.27%
Visual HMM Models 96.3%
Speech Landmark & Segment + Visual HMM Models 0.91%

Table 2. WERs for speech landmark and segment models, visual
HMMs, and their combined models.

creases. The two feature stream need a minimum amount of asyn-
chrony so a compatible hypothesis can be considered. The compu-
tation time increases with increasing degree of asynchrony because
the size of search space increases due to an increasing number of
hypertimes visited.

3.2. The AV-TIMIT Task

The multi-stream framework can also be applied to other recogni-
tion tasks. Here we show its use for audio-visual speech recogni-
tion on the AV-TIMIT corpus. The AV-TIMIT corpus is a collection
of audio-visual speech data of many speakers reading phonetically
rich TIMIT sentences. Along with the speech waveform, the facial
movement of the speakers were also captured in video. The training
set consists of 3,608 utterances from 185 speakers, and the test set
contains 285 utterances from other 19 speakers [14].

Two baseline systems were used for this task. The first baseline
system was a segment-based system using both landmark and seg-
ment features from audio data only. The second baseline system was
a frame-based 3-state HMM system modeling only the visual fea-
tures. The multi-stream system modeled these three feature streams
together.

Table 2 summarizes the results in terms of WERs of the base-
line speech landmark and segment models, visual HMM models, and
their combined models. The WER is the same as reported in [17],
where a custom designed decoder was used for combining the same
3 feature streams. The decoding speeds of the two decoders were
approximately the same.

4. DISCUSSION & FUTURE WORK

The work reported in this paper summarizes our effort to construct
a new flexible framework for multi-stream speech recognition. The
framework takes advantage of the multi-tape FST representation to
provide flexibility in representation. The individual feature streams
in this framework can include, for example, fixed-rate or variable-
rate sequences of frames or more generally directed acyclic graphs
such as phonetic segments. When operating with a single stream,
the framework can represent a traditional frame-based HMM or a
segment-based system. When operating with multiple streams, it
enables the integration of diverse feature streams, potentially im-
proving overall system accuracy. In this paper, we demonstrated two
multi-stream systems: one a combination of a variable-rate landmark
model with a standard HMM for the WSJ task and the other a com-
bination of a landmark model, a segment model, and a visual HMM
for the AV-TIMIT task.

With the specification of the time predicates on the multi-tape
FST, the framework also provides the means to accommodate the
possible asynchrony among the various feature streams. Because
the degree of asynchrony allowed, as expressed by time predicates,
we have found that good design of the predicates themselves can be
important in minimizing decoding time.

In this paper, we experimented with combining two or three fea-
ture streams. In future, we plan to combine more feature streams,

such as sub-band features or articulatory features, but, in general
the search space is exponential in the number of feature streams.
If decoding becomes too computationally demanding, a multi-pass
approach might be desirable. Here we might perform a first pass in-
tegrating a subset of the streams, and then use the output of this pass
(e.g., word or phone lattice) to constrain a second pass integrating
the reamainder of the streams. To date, we have focused primarily
on synchronization at the phonetic level, but we wish to extend the
approach to the syllable level in the future.
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