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ABSTRACT
This paper presents a novel methodology to improve Large Vocabu-

lary Continuous Speech Recognizer (LVCSR) hypotheses using ad-

ditional phonetic, lexical, syntactic and semantic knowledge. Such

additional higher level knowledge sources are unavailable during the

LVCSR decoding due to the various constraints placed on the suc-

cessful deployment of such information sources. This paper will

focus on the extraction of WER improvements from the LVCSR n-

best list using the additional higher level knowledge sources as the

nucleus of a reranking mechanism. We shall illustrate the improve-

ments obtained for the conversational speech transcription task and

also for the directed dialog speech utterance transcription task in a

grammar tuning application.

1. INTRODUCTION

Current generation of Large Vocabulary Continuous Speech Recog-

nition (LVCSR) systems rely on a HMM based acoustic model and a

n-gram based language model (LM) to perform speech-to-text con-

version with reasonable accuracy. Several LVCSR systems, with

accuracy constraint, perform multiple recognition passes on each

speech utterance to get the best performance with respect to Word

Error Rate (WER). Even in such multi-pass LVCSR systems, a sig-

nificant amount of untapped WER improvements remain hidden in-

side the LVCSR n-best lists and word-lattices. We use SONIC [1], a

LVCSR from the University of Colorado at Boulder, to find the ex-

tent of WER improvements that could be extracted from the n-best

lists and word lattices for the NIST HUB5 2000 evaluation set (40

CallHome and 40 Switchboard-1 conversation sides).

We train SONIC for the telephone transcription task using 160

CallHome conversation sides and 4826 Switchboard-1 Release 2 con-

versation sides (without the speech files from HUB5 2000 set). We

use the SRI HUB5 2000 model as the tri-gram back-off LM. SONIC

performs a 3-pass recognition (Gender-dependent acoustic models,

VTLN + SAT acoustic models + MLLR, MLLR(2) adaptation) to

produce the baseline hypotheses, n-best lists and word lattices.

Figure 1 presents the Oracle WER values possible at various

depths in a 200-best list produced by the 3-pass SONIC LVCSR for

the HUB-5 set. The oracle uses manual speech transcriptions as ref-

erence to propose the best hypothesis at various depths in the n-best

list. The experimental analysis for Switchboard (CallHome) shows

that the choice of the best hypothesis from the 200-best list gives a

10.12% (13.59%) absolute WER reduction over the 3-pass recogni-

tion baseline, while the word lattice gives a 11.09% (14.66%) ab-

solute WER reduction. The Oracle captures majority of the most

accurate Switchboard (CallHome) hypotheses within 80 to 90 n-

best depth for each utterance. These experimental results prove that
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Fig. 1. Oracle WER at various n-best depths for HUB5 2000 set.

substantial improvements can be gained by applying a strong post-

processing mechanism like reranking, even at a small n-best depth.

2. N-BEST LIST RERANKING

There have been several attempts at combining various knowledge

sources, unavailable to the original ASR decoder, into a post-ASR

mechanism to reduce the original WER. Reference [2] proposes two

semantic LMs: a semantic concept based model using long span

semantic units to capture an utterance’s meaning sequences and a

semantic structured model which uses semantic parsers to extract

information from an utterance. Similar to the lexical/syntactic fil-

tering mechanisms and semantic transformation based LM for the

Question-Answering domain [3], [4] propose a syllable based lexi-

cal model and a domain based lexico-semantic oriented approach to

process lexical/semantic errors. In this paper, we avoid crafting do-

main specific linguistic or lexical rules [3, 4] or, model small domain

dependent statistical knowledge sources [2] due to their sub-optimal

performances in the conversational speech recognition (CSR) task.

Reference [5] focuses on combining n-gram based local depen-

dencies, topic based and syntactic based [6] long distance dependen-

cies into a maximum entropy LM. Reference [7] presents an almost-

parsing LM within the Constraint Dependency Framework for CSR,

achieving performances competitive with state-of-the-art parser LMs

[6, 8]. The LM in [7] tightly integrates multiple knowledge sources

but relies mainly on lexical features along with syntactic constraints

and slightly on semantic constraints. Given the CSR domain inde-

pendence, we model multiple knowledge sources [9] into a n-best

reranking process (ignoring additional small improvements in word-

lattices) and focus on more extensive phonetic and semantic rerank-

ing features. Figure 2 captures our proposed architecture of deploy-
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Fig. 2. N-best list reranking process using the phonetic, lexical, syntactic and semantic features.

ing phonetic, lexical, syntactic and semantic knowledge sources. We

hope to reduce LVCSR WER by working these sources in tandem,

complementing each other.

For every n-best hypothesis, we compute the confidence score in

the following manner: if Ph = ph1, ph2,. . . .,phm is the phoneme
sequence corresponding to the word sequenceWh = w1, w2,. . . .,wk,

predicted by the LVCSR for the acoustic frames A = a1, a2,. . . .,am
of a single utterance, then

Score (Wh) = P (W∧Ph|A) =
P (W∧Ph∧A)

P (A)

=
P (Ph∧A)

P (A)
∗
P (W∧Ph∧A)

P (Ph∧A)

= P (Ph|A) ∗
P (Ph∧A|W ) ∗P (W )

P (Ph∧A)

= P (Ph|A) ∗
P (Ph∧A|W )

P (Ph∧A)
∗P (W ) (1)

The following sections will present a detailed explanation of the

knowledge resources modeled for computing each constituent of (1).

2.1. Phonetic Features

We assign phonetic scores to each n-best list hypothesis as a measure

of the LVCSR phoneme classification accuracy compared to an ad-

ditional phoneme classifier. We use Support Vector Machine (SVM)

as the additional phoneme classifier due to its superior performance

in classification tasks including phoneme recognition [10]. The first

objective of the phonetic score is to derive the SVM posterior prob-

ability of the acoustic frames fitting into the LVCSR phoneme se-

quence i.e. assign SVM supportive probability score to the phoneme

sequence produced by the LVCSR. The second objective is to cate-

gorize the acoustic frames into a sequence of phonemes independent

of the original LVCSR phoneme classification. i.e. the best SVM

phoneme sequence is used to assign a SVM supportive value based

on the match/mismatch with the LVCSR phoneme sequence. We use

only a subset of the acoustic frames (a central band of frames) repre-

senting each phoneme inWh for the phonetic score computation due

the phoneme context independence assumption in the SVM models.

Training One-Vs-All SVM phonememodels is impractical, cum-

bersome and has a high error rate. Distributing the task to produce

One-Vs-One binary SVM models needs 1225 trained models for a

set of 50 phonemes. Hence, we group the phonemes into 13 cat-

egories based on their acoustic properties [9] and thus reduce the

number of SVM models to 169 (78 One-Vs-One category models

and, 91 One-Vs-One models for phoneme pairs in each category).

2.1.1. SVM Phoneme Class Posterior Probability

We use the term P (Ph|A) in (1) to derive the supportive SVM pos-
terior probability of the acoustic frames A fitting into the LVCSR

phoneme sequence Ph. Phoneme boundary information in the n-

best list is used to determine the LVCSR phoneme sequence for

framesA inWh. P (Ph|A) is modified due to the acoustic property-
based hierarchical SVM classification: If Cat(ph) is the function
which assigns a category to a phoneme ph, then

P (Ph|A) = P (Ph∧Cat (Ph) |A)

=
P (Cat (Ph)∧A)

P (A)
∗
P (Ph∧Cat (Ph)∧A)

P (Cat (Ph)∧A)

= P (Cat (Ph) |A) ∗P (Ph|Cat (Ph)∧A) (2)

P (Cat(Ph)|A) in (2) represents the SVM class posterior probabil-
ity of the acoustic frames belonging to the original LVCSR phoneme

category sequence, while P (Ph|Cat(Ph)∧A) represents the SVM
class posterior probability of the acoustic frames belonging to the

original LVCSR phoneme sequence given the phoneme categories.

2.1.2. LVCSR-SVM Phoneme Classification Accuracy Probability

Let Phs = phs
1, phs

2,. . . .,phsm be the best SVM phoneme sequence
forA but not containing the phonemes fromW ’s phoneme sequence

i.e. each acoustic frame ai is labeled as a phoneme phi or phs
i .

P (Ph∧A|W )

P (Ph∧A)
≈

P (Ph∧A|¬Phs)

P (Ph∧A)
{Using the defn ofPh

s}

=
P (Ph∧A) − (P (Ph∧A|Phs) ∗P (Phs))

P (¬Phs) ∗P (Ph∧A)

=
1

P (¬Phs)
−

P (Ph∧A|Phs) ∗P (Phs)

P (Ph∧A) ∗P (¬Phs)

=
1

P (¬Phs)
−

P (Ph∧A∧Phs)

P (Ph∧A) ∗P (¬Phs)

=
1

P (¬Phs)
−

P (Ph∧Phs|A)

P (Ph|A) ∗P (¬Phs)

=
1

P (¬Phs)
−

P (Phs|A∧Ph) ∗P (Ph|A)

P (Ph|A) ∗P (¬Phs)
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=
1 − P (Phs|A∧Ph)

P (¬Phs)
=

1 − P (Phs|A∧Ph)

1 − P (Phs)

≈
1 − P (Phs|A∧Ph)

1 − P (Phs|Ph)
(3)

The phonetic score (3) prefers a hypothesisWh which matches with

the best SVM phoneme sequence Phsvm (Phsvm is different from

Phs). P (Phs|A∧Ph) is the probability of acoustic framesA being
categorized into Phs, given the restriction imposed on SVM regard-

ing the selection of Phs, by the LVCSR sequence Ph inWh (from

Phs defn). We compute P (Phs|Ph) using a matrix, containing
the probabilities of a frame ai mapping to phs

i given the LVCSR

choice phi, collected over a large training set. The probability value

P (Phs|A∧Ph) is low if phi matches with the best SVM phoneme

phsvm
i for ai, since this would imply that phs

i is the SVM’s second

best choice, and hence has a lower SVM posterior probability value

than phsvm
i . Intuitively, P (Phs|Ph) has a high value due to the

increased number of matches between phsvm
i and phi, and hence

increased number of conflicts between phs
i and phi. Thus, the score

(3) assigned toWh will be high. Similarly, (3) is low when phi does

not match with phsvm
i for ai. In (3), we compute P (Phs|A∧Ph)

using the category and phoneme SVM models just like in (2).

2.2. Lexical Features

Reference [11] approximates the posterior probabilities and then com-

putes the expected WER using the posterior probability distribution.

Agreeing with the views in [11] on extracting certain suppressed

n-gram word combinations, we propose a simple mechanism (lexi-

cal features have a small performance gain with huge computational

need [9]) to capture dominant word occurrences using the n-best list

word boundary information (avoids string alignment) and score each

hypothesis based on the presence of these dominant words.

ScoreLx (Wh) = PLM (Wh) ∗
kY

i=1

P
`
wi

h | B
`
wi

h

´´

P (W | B (wi
h))

(4)

PLM (Wh) in (4) is the LVCSR trigram score associated with the
n-best list hypothesis containing k words. In the second part of this

score, we compute the unigram probabilities of the words in each

hypothesis, given their word time boundaries, using the set of words

occurring in the n-best list as a reference i.e. probability of the word

wi
h occurring in a particular hypothesis time-frame, normalized by

all the n-best list words W occurring in that particular hypothesis

time-frame in all the n-best hypotheses. Function B
`
wi

h

´
returns

the time boundary information for the word wi
h usually with a buffer

of a small constant number of time frames on either side of the word.

2.3. Syntactic Features

The replacement/interpolation of syntactic models [5, 6, 7, 8, 12]

with n-gram LMs, for n-best list reranking, word lattice processing,

or directly into the LVCSR, has seen a large amount of literature

lately. Reference [8] presents a two-stage parsing LM. They generate

a set of high probability candidate parses using a PCFG parser and

then rescore them using a lexicalized syntactic LM [12].

Since immediate-head parsers [12] are the most accurate among

other statistical parsers, the idea of using a syntactic LM based on

immediate head parsing seems too attractive to be ignored. This

is ideal for our work since the n-best reranking does not impose a

left-to-right processing constraint. We train a lexicalized syntactic

LM for conversational speech using the immediate-head parser and

generate the syntactic score for each n-best hypothesis. Hence, the

syntactic score (5) is given by the probability of the best parse (π),

for the hypothesisWh, generated by the lexicalized syntactic model.

ScoreSyn (Wh) = P (π, Wh) (5)

2.4. Semantic Features

Primarily, the use of semantic knowledge in ASR LMs has been lim-

ited to semantic representations of an application domain, depending

on the generation/availability of such domain dependent semantic

knowledge [2, 3, 4]. In this paper, we extract semantic knowledge

from the basic semantic propositions of a language and use it for the

n-best reranking. PropBank [13] is a 300K word corpus which con-

tains predicate argument relations and labeling for the verbs from the

WSJ part of Penn TreeBank. For our n-best reranking, we are inter-

ested in the semantic argument assignments defined in PropBank for

around 3500 verbs. For these verbs, PropBank assigns a set of core

arguments and additional adjunctive arguments in some cases.

[14] present a semantic parsing technique using SVM, to iden-

tify and label semantic arguments for each predicate in a sentence.

The task of the semantic parser is to identify the constituents of a

sentence that represent the semantic arguments of a given predicate

and assign appropriate argument labels to them. We use the ASSERT

semantic parser [14] to extract statistical semantic knowledge, based

on the predicate-argument relations defined in PropBank. We ran the

semantic parser on a 3 million sentence text corpus (Switchboard &

CallHome transcriptions excluding HUB5 evaluation test set and,

LA Times Corpus) and, for each identified predicate, count the var-

ious argument labels covered, using the PropBank list of arguments

for verbs as a reference. We produce a statistical knowledge source

containing 6.9 million identified predicate argument structure.

EXtended WordNet2.0-1 [15] enhances WordNet2.0. It con-

tains enhancements of the Wordnet glosses, subject and direct object

labeling for predicates in the glosses, syntactically parsed glosses

and links with other glosses that describe related concepts. The

previously extracted semantic knowledge is augmented with addi-

tional predicate argument coverage information (117k predicates)

from eXtended WordNet2.0-1. The extracted semantic knowledge

is used to evaluate the semantic coherence of the n-best hypotheses.

ScoreSem (Wh) =

rX

i=1

P (Coverage (Wh, vi) | vi)

=

rX

i=1

P (Coverage (Wh, vi) ∧ vi)

P (vi)

=

rX

i=1

Pp
j=1

Cnt(FillSlot(j,Wh,vi)∧vi)
Pq

j=1
Cnt(FillSlot(j,vi)∧vi)

Cnt(vi)P
t
j=1

Cnt(vj)

(6)

We run each n-best hypothesis through the semantic parser and find

the arguments for all the predicates identified in the hypothesis. In

(6), v1, v2,. . . .,vr are the predicates in the LVCSR hypothesis Wh,

p is the number of arguments for predicate vi in hypothesis Wh, q

is the total number of arguments possible for predicate vi in Prop-

Bank and t is the total number of predicates identified in PropBank.

(6) provides a semantic score based on the various argument labels

corresponding to all the predicates vi identified in the hypothesis

Wh. FillSlot (j, Wh, vi) lists all the occurrences of the predicate
vi filling j arguments labels in Wh, while FillSlot (j, vi) lists all
the occurrences of the predicate vi filling j arguments labels in the

extracted semantic knowledge base.

I ­ 415



 15

 20

 25

 30

 35

 40

 45

 10  20  30  40  50  60  70  80  90  100

W
E

R
 V

al
ue

N-best Hypothesis Depth

HUB5 2000 SWB Baseline WER
HUB5 2000 SWB Oracle WER

HUB5 2000 SWB Reranking WER
HUB5 2000 SWB Reranking WER(Best)

Fig. 3. Various HUB5 2000 Switchboard evaluation WER results.

3. RESULTS AND EXPERIMENTAL SETTINGS

The reranking score assigned to an LVCSR n-best hypothesis is a

simple linear weighed combination of the individual scores from

each participating knowledge source. (w1, w2) , w3, w4, w5 repre-

sent the weights assigned to the phonetic (two scores), lexical, syn-

tactic and semantic features respectively.

The baseline configuration of SONIC remains the same as the

one detailed in section 1. The SVM models are trained using the 39
PMVDR [1] feature set while the SONIC models are trained using

the conventional 39 MFCC feature set. We create the 169 One-Vs-
One SVM models using 64K positive and 64K negative examples
from the SONIC training speech files. We described the experimen-

tal settings for the phonetic, lexical, syntactic and semantic features

in the previous sections. Figure 3 presents the reranking results at

various n-best depths (varied by multiples of 5) for 40 HUB5 2000

Switchboard conversation sides using the best knowledge weights

combination of (w1 = 16, w2 = 17, w3 = 14, w4 = 18, w5 = 35).
We find the best set of weights by running WER testing trials on 40

HUB5 2000 CallHome conversation sides as a development corpus.

The proposed reranking mechanism achieves the best WER im-

provements at the 15-best depth with 2.9% absolute WER reduction

(9.6% relative WER reduction). This is not very surprising since

nearly 80% of the total WER improvement listed by the Oracle is

hidden within the 20-best hypotheses. This strengthens our propo-

sition about gaining substantial improvements by applying a strong

post-processing mechanism at a small n-best depth. We believe that

the 2.9% improvement is achieved due to the knowledge sources

complementing each other in tandem and hence, a breakdown of the

improvements from the various knowledge sources will not reflect

their actual individual contributions but higher weights assigned to

the phonetic and semantic features make them the main WER im-

provement contributors. We would also like to point out that the

baseline WER is around 5-7% higher because we did not spend time

tuning the pronounciation dictionary for the SWB task, nor did we

include rover or any similar technique into the baseline and, the sys-

tem was not tuned for accuracy while compromising on speed.

The use of the non-domain specific knowledge sources not only

improves the WER for CSR as shown for the Switchboard task but

also for goal based telephone speech (one of the reasons not to in-

clude special CSR features like incomplete sentences and disfluen-

cies). Reference [9] presents a efficient procedure to create and tune

grammars for telephone based directed dialog speech applications

using only spoken user utterances. A necessary first step in this au-

tomation process is transcribing the user responses more accurately

than has previously been possible. Using the same reranking setting

as for the Switchboard task, we achieve 6.9% absolute WER reduc-

tion (14.47% relative reduction) by reranking a 30-best list for a set

of 8013 user utterances for 4 prompts from 3 different applications.

4. CONCLUSIONS AND FUTUREWORK

This paper presented a n-best reranking mechanism that uses non-

domain specific and more extensive additional phonetic, lexical, syn-

tactic and semantic knowledge to improve WER in telephonic utter-

ance recognition. Our future work includes increasing the coverage

of the semantic model by including other content word predicates

along with verbs into a more robust statistical argument relations

identification and labeling framework. We also intend to devise a

better and robust knowledge combination technique or possibly em-

bed some of these knowledge sources directly into the LVCSR.
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