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ABSTRACT

We propose a new approach to isolated-word speech recogni-
tion based on penalized logistic regression machines (PLRMs).
With this approach we combine the hidden Markov model
(HMM) with multiclass logistic regression resulting in a pow-
erful speech recognizer which provides us with the posterior
probability for each word. Experiments on the English E-
set show significant improvements compared to conventional
HMM-based speech recognition.

1. INTRODUCTION

Let (x, y) ∈ X × Y be a random pair drawn according to an
unknown probability distribution p(x, y). We consider x ∈ X
to be a suitable representation of an observable speech signal,
and y ∈ Y to be an unobservable label describing the lin-
guistic content of x. For example, x can be a sequence of
Mel-frequency cepstral coefficients (MFCC) and y can repre-
sent the word label of x. We are concerned with the problem
of predicting the unknown label y from the observed feature
representation x.

The plug-in maximum a posteriori (plug-in MAP) deci-
sion rule [1, 2] predicts the unknown label by

ŷ = arg max
y

p̂(x|y)p̂(y), (1)

where p̂(x|y) and p̂(y) are estimates of the class-conditional
distribution p(x|y) and the prior probability p(y), respectively.
In speech recognition, p̂(x|y) is typically a hidden Markov
model (HMM) whose parameters are estimated using the max-
imum likelihood (ML) criterion. With this approach, the HMM
parameters for a class y are optimized independently of the
other classes so as to best describe the generative process of
a sample x. As a consequence, due to incorrect model as-
sumption for p(x|y) and a limited amount of training data,
the error rate of the plug-in MAP rule with ML training may
be far from the optimal error rate.

In [3], the authors acknowledge the sub-optimality of the
plug-in MAP rule with ML training and present the minimum
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classification error (MCE) method which optimizes the HMM
parameters discriminatively in order to minimize a smoothed
error count on the training set. Their method improves the er-
ror rate considerably compared to the plug-in MAP rule with
ML training, but it has some difficulties in the specifications
of a number of hyperparameters in the criterion function.

In this paper we propose a new method for isolated-word
speech recognition. Our approach makes use of the penalized
logistic regression machines (PLRMs) presented in [4, 5]. In
particular, we use multiclass logistic regression to model the
posterior distribution p(y|x) and perform deterministic pre-
diction by

ŷ = arg max
y

p̂(y|x), (2)

where p̂(y|x) is a model for p(y|x). Our chosen model has
two sets of parameters; a set of HMM parameters and a set of
weights used for multiclass logistic regression. The parame-
ters are optimized by maximizing a penalized logistic regres-
sion likelihood. Unlike MCE, this criterion function depends
only on one hyperparameter. In addition, we obtain the pos-
terior probability for each word. These posterior probabilities
could, for example, be used as confidence measures [6].

In the next section we present a PLRM that is tailored to
the speech recognition problem. Then, in Sec. 3, we show
some experimental results on the English E-set. Section 4
concludes the paper.

2. A PENALIZED LOGISTIC REGRESSION
MACHINE FOR SPEECH RECOGNITION

The penalized logistic regression machine (PLRM) [4, 5] was
originally designed to be used with vectorial inputs. Here
we extend this framework and present a PLRM that allows
variable-length sequences of feature vectors as input, as this
is the common representation for speech signals.

For mathematical convenience, let the label y ∈ Y be
represented using a one-of-K coding scheme, i.e., y is one
of the vectors in the K-dimensional Euclidean basis Y =
{(1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, 0, . . . , 1)} with
K = |Y| denoting the number of words in the vocabulary.
Put differently, the kth word in the vocabulary is represented
by a K-dimensional unit vector whose kth element is one.
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Then the probability distribution of the labels is the condi-
tional multinomial distribution with parameters equal to the
posterior probabilities pk = p(yk = 1|x), for k = 1, . . . , K.

In the following, we choose a parameterized model for the
posterior probabilities pk, choose a criterion function which
is to be minimized for the purpose of obtaining estimates of
the model parameters, and propose a numerical optimization
algorithm for the minimization of the criterion function.

2.1. The Model

We use a parameterized model with parameter θ of the poste-
rior probability pk of the form

p̂k = p̂k(x; θ) =
exp fk(x; θ)∑K
l=1 exp fl(x; θ)

, (3)

where fk(x; θ) is a discriminant function for the kth word.
This is known as the softmax function and is widely used in
multiclass logistic regression. For the discriminant functions
we choose

fk = fk(x; θ) = wT
k φ(x; Λ), (4)

where φ : X → R
M , x �→ φ(x; Λ) is a nonlinear map into

M -dimensional space parameterized by Λ, and wk are M -
dimensional weight vectors. The parameters of the model are
jointly denoted by θ = (W, Λ), where W is a K × M -matrix
whose rows are wT

k .
The nonlinear map φ should preserve discriminative in-

formation embedded in the speech signals. We propose to use
a mapping involving a set of HMMs for the words, e.g.,

x �→ φ(x; Λ) = [1, φ(x; λ1), . . . , φ(x; λK)]T (5)

where φ(x; λk) is the log-likelihood of the HMM with pa-
rameter λk corresponding to the kth word, with λk being the
kth column of the matrix Λ. Thus, if L = |λk| denotes the
number of parameters in each HMM, Λ is an L×K matrix of
all the HMM parameters. The inclusion of 1 as the first ele-
ment of φ(x; Λ) ensures that the discriminant functions in (4)
are affine transformations of the HMM log-likelihoods, i.e.,
that one of the terms in each scalar product is a bias term.
To be more specific with our choice of nonlinear map, let
x = (x1, . . . , xT ) be a sequence of T feature vectors. Fur-
thermore let λ = (π,A, b) denote the parameters of an HMM;
π = [πi] is the vector of initial state probabilities, A = [ai,j ]
is the transition probability matrix, and b = {bi(x)} is the
collection of state-conditional pdfs. Then1

φ(x; λ) = log max
q

πq0

T∏
t=1

aqt−1,qtbqt(xt). (6)

where q = (q0, . . . , qT ) is a state sequence.
Figure 1 illustrates our choice of model. For a sequence of

feature vectors, x, we calculate the log-likelihood (6) for each
word HMM, perform an affine transformation (4) of these

1This is actually an approximation of the log-likelihood of an HMM. Nev-
ertheless, since this is a common approximation in the speech literature, we
refer to this simply as the log-likelihood.
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Fig. 1. The model of the posterior probabilities p̂k for a word
with feature representation x.

likelihood values in order to get a discriminant function for
each word, and finally map the discriminant functions to the
posterior probabilities using the softmax function (3). These
posterior probabilities can be used in deterministic prediction
by selecting the word which has the highest probability.

In the rest of this section we discuss how the parameter
θ = (W, Λ) of the model can be estimated.

2.2. The Criterion Function

Given a set of training data D = {(x(n), y(n))}N
n=1, the pa-

rameter θ could be estimated by maximizing the likelihood of
the multinomial distribution which is

L(θ;D) =
N∏

n=1

p̂y(n) , (7)

where we let the label y(n) serve as an index. This means that
p̂y(n) has the index corresponding to the index of the nonzero

entry in the nth training label y(n).
However, due to the limited amount of training data, the

maximum likelihood estimate is prone to overfitting, and may
lead to poor prediction on unseen speech signals. For that

reason, we introduce a penalty Ω(θ) and find an estimate θ̂ by
maximizing the penalized logistic regression likelihood

Pδ(θ;D) = L(θ;D)Ωδ(θ), (8)

where δ > 0 is a hyperparameter used to balance the likeli-
hood and the penalty factor.

It was proposed in [4] to use a penalty of the form

Ω(θ) = exp
(
− 1

2
trace ΓWΣWT

)
, (9)

where Γ is a K × K diagonal matrix whose kth diagonal el-
ement is the fraction of training samples with the kth class
label, and Σ = Σ(Λ) is an M × M positive definite matrix.
The purpose of Γ is to compensate for possible differences in
the number of training samples from each class. As for Σ, the
simplest choice is Σ = I , where I denotes the identity ma-
trix. Another choice is to let Σ be the sample moment matrix
of the mapped speech data, that is, Σ = 1/NΦΦT , where Φ
is an M × N matrix with columns φ(x(n), Λ).
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Fig. 2. The coordinate descent method.

With the penalty in (9), the negative logarithm of the pe-
nalized logistic regression likelihood is

P log
δ (θ;D) = −

N∑
n=1

log p̂y(n) +
δ

2
trace ΓWΣWT . (10)

The next subsection concerns the minimization of the cri-
terion function in (10) with respect to θ = (W, Λ).

2.3. Parameter Estimation

The function in (10) is convex with respect to W [4], but it
is not guaranteed to be convex with respect to Λ. Therefore,
the best we can hope for is to find a good local minimum. We
propose to use a coordinate descent method to obtain a local

minimum of P log
δ (θ;D) = P log

δ (W, Λ;D), where the coordi-
nates are W and Λ. The algorithm is initialized with Λ0, for
which a reasonable choice is the ML estimate of the HMM
parameters. Then the initial weight matrix can be found as

W0 = min
W

P log
δ (W, Λ0;D). (11)

The iteration step is as follows:

Λi+1 = min
Λ

P log
δ (Wi, Λ;D), (12a)

Wi+1 = min
W

P log
δ (W, Λi+1;D). (12b)

The coordinate descent method is illustrated in Fig. 2.

In the following, we describe approaches to minimizing

P log
δ (W, Λ;D) with respect to W and Λ, which are needed in

(12a) and (12b).

2.3.1. Minimization with respect to W

In [7], the author presents an efficient algorithm for the con-

vex minimization of P log
δ (W, Λ;D) with respect to W . The

algorithm combines Newton’s method with the conjugate gra-
dient method. After choosing an initial weight matrix W 0, the
iteration step in Newton’s method is

W i+1 = W i − α∆W i, (α > 0). (13)

The update matrix ∆W i is the solution to

N∑
n=1

(
diag p̂(n) − p̂(n)p̂(n)T

)
∆W iφ(n)φ(n)T + δΓ∆W iΣ

= (P − Y )ΦT + δΓW iΣ, (14)

where p̂(n) is a K-dimensional vector with elements p̂k(x(n); θ),
P is a K × N matrix whose columns are p̂(n), and φ(n) =
φ(x(n); Λ) as given in (5). This equation can be solved by the
conjugate gradient method. For more details see [7].

2.3.2. Minimization with respect to Λ

The HMM parameters in Λ have certain constraints on which
values they can take on. For example, all variances must be
greater than zero. In order to use an unconstrained optimiza-
tion method such as the steepest descent method, we choose
to first transform the parameters to a space where any value
is valid. Then we can apply the steepest descent method with
these transformed parameters, and finally transform the pa-
rameters back to the original space. We use the same param-
eter transformations as in [3], e.g., σ �→ σ̃ = log σ and µ �→
µ̃ = µ/σ for variances and means, respectively. Thus, after

choosing an initial matrix Λ0, we use a mapping Λ0 �→ Λ̃0 to
the transformed feature space and iterate according to

Λ̃i+1 = Λ̃i − ε∇Λ̃P log
δ (W, Λ̃;D)

∣∣
Λ̃=Λ̃i , (ε > 0). (15)

Finally, the resulting matrix Λ̃∗ is mapped back to the original

parameter space, Λ̃∗ �→ Λ∗.
Straightforward, but tedious calculation gives the gradient

needed in (15). We omit the expression for the gradient due
to space limitations.

3. EXPERIMENTS

We did experiments on the E-set of the TI46 database. This
set consists of 1433 training utterances and 2291 test utter-
ances of one of the letters in the set {B,C,D,E,G,P,T,V,Z} spo-
ken in isolation. From each speech signal we extracted a se-
quence of 39-dimensional feature vectors, including MFCC,
delta and acceleration coefficients. We used a 25 ms Ham-
ming window and a window shift of 10 ms. Each word was
modeled by a 6-state left-to-right HMM with a Gaussian mix-
ture model with 5 mixtures in each state.

We initially estimated the HMM parameters Λ0 using stan-
dard ML estimation. Then we optimized W and Λ using the
coordinate descent approach described in the previous section
with stepsizes α = 1.0 and ε = 0.1, respectively. For each
coordinate descent iteration (12a, 12b) we iterated once in the
steepest descent method (15) and three times in the Newton
method (13).

Table 1 shows the accuracy on the test set using PLRM
with δ = 1000 and 1000 coordinate descent iterations com-
pared with the plug-in MAP rule with ML training and the
MCE method in [3]. Deterministic prediction with PLRM
outperforms both plug-in MAP with ML training and MCE.
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Fig. 3. Accuracy on the English E-set after 1000 iterations.

Fig. 4. Accuracy on the English E-set with δ = 1000.

The error reduction rates are 72.6% and 36.0% for plug-in
MAP with ML training and MCE, respectively.

Table 1. Recognition Accuracy (%)
Plug-in MAP (ML) MCE PLRM (δ = 1000)

88.3 95.0 96.8

In Fig. 3 we have plotted the accuracy of PLRM after 1000
iterations for various values of δ in the range [10, 105]. We
can see that values of δ around δ = 1000 gives the best accu-
racy. Moreover, even the inferior accuracies shown consider-
ably outperform the accuracy of the plug-in MAP rule and do
nearly as well as the MCE approach.

Figure 4 shows the accuracy on both the training set and
the test set as a function of number of iterations for δ = 1000.
The accuracy on the training set reaches near 100% after just
a few iterations. The accuracy on the test set increases rapidly
the first few iterations, and then increases more slowly as the
number of iterations get larger.

With PLRM we obtain the probability for each word. In
deterministic prediction the word with the highest posterior
probability is chosen. A histogram of the highest posterior
probabilities for all of the test utterances is shown in Fig. 5.
The probabilities corresponding to incorrect decisions are dis-
played with a darker color than the probabilities correspond-
ing to correct decisions. Note that the incorrect decisions have
lower probability than the majority of the correct decisions.
This means that these probabilities may serve as confidence

Fig. 5. Histogram of the highest posterior probability for all
of the test utterances.

measures or can be used in utterance verification.

4. CONCLUSIONS AND FUTURE WORK

We have presented a new method for speech recognition based
on penalized logistic regression machines (PLRMs). Exper-
iments on the English E-set show the potential of this ap-
proach. Not only does PLRM achieve higher accuracy than
the conventional plug-in MAP rule with ML training and MCE,
but it also provides us with the posterior probability for each
word. Posterior probabilities have many uses, including con-
fidence measures and utterance verification. Also, the proba-
bilities can be used for N-best rescoring of connected speech
recognition. This is a topic for future research.
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