
PROSPECTS FOR A SILENT SPEECH INTERFACE USING ULTRASOUND IMAGING 

Bruce Denby1, Yacine Oussar2, Gérard Dreyfus2, Maureen Stone3

1Laboratoire des Instruments et Systèmes d’Ile de France, Université Pierre et Marie Curie, 

B.C. 252,  4 place Jussieu, 75252 Paris Cedex 05, France ; denby@ieee.org
2Laboratoire d’Electronique, Ecole Supérieure de Physique et Chimie Industrielles de la Ville de Paris (ESPCI-Paristech), 

10 rue Vauquelin, 75231 Paris Cedex 05, France 
3Vocal Tract Visualization Lab, University of Maryland Dental School,  

666 W. Baltimore Street, Baltimore, MD, 21201, USA 

ABSTRACT 

The feasibility of a silent speech interface using ultrasound 

(US) imaging and lip profile video is investigated by 

examining the quality of line spectral frequencies (LSF) 

derived from the image sequences. It is found that the data 

do not at present allow reliable identification of silences and 

fricatives, but that LSF’s recovered from vocalized passages 

are compatible with the synthesis of intelligible speech. 

1. INTRODUCTION 

There has been interest recently in the idea of a sensor-

based system allowing speech communication via the 

standard articulators, but without glottal activity – that is, a 

silent speech interface. Possible applications include a silent 

cellphone, silent voice data entry system, or an alternative to 

tracheo-oesophagal speech (TES) for persons having 

undergone a tracheotomy. Approaches using ultrasound 

imaging [1] and electromyography [2] have appeared in the 

literature. X-rays and magnetic resonance imaging (MRI) 

[3-5], though of excellent spatial resolution, are probably 

not applicable here due to health and portability issues. This 

article addresses the viability of the ultrasound option by 

evaluating the quality of the imagery-extracted phonetic 

parameters using spectral distortion measurements and 

informal listening tests.  

The work is based on an ultrasound dataset with a lip 

profile image embedded in each frame, along with a 

synchronized audio track. Section 2 details data acquisition 

and preprocessing, while the machine learning approach 

used to map tongue and lip contours onto LSF’s is described 

in section 3. Problems encountered in an initial analysis pass 

– due to ambiguities between vocalized and unvocalized 

phones – are discussed in section 4, and some interpretative 

commentary given. Spectral distortion measurements and 

informal listening scores on voiced speech – the principal 

focus of this article – are presented in section 5. The article 

closes with conclusions and perspectives for the future.         

2. DATA ACQUISITION AND PREPROCESSING 

Data were taken using an Acoustic Imaging Performa 30 Hz 

ultrasound machine [6] with a 2 to 4 MHz, 96 element 

curvilinear array. The University of Maryland HATS system 

[7] was employed to immobilize the speaker’s head and 

support the transducer beneath the chin (ultimately, of 

course, a lighter, wearable system is envisaged). An 

example image is shown in figure 1.  

Figure 1. Example ultrasound image showing tongue contour  

(arrow; tongue tip is to the right) and embedded lip profile image 

(the insert at the lower left of the image). 

Tongue contours were extracted using a maximum 

smoothed spatial intensity gradient criterion, and were 

stored as the r values measured at 14 equally spaced fixed 

points (r=0 is at the center of the US probe). The lip 

contours were obtained by simple binarization of the profile 

image, and the x-y positions of the horizontal extrema of 

upper and lower lips, as well as that of the lip commissure, 

were then stored. The x-y coordinates of points a small 

distance above and below each of these points were also 

stored, in order to provide indicators of lip rounding and lip 

opening angle. The input to the machine learning algorithm 
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thus consisted of the 14 tongue r values plus 9 x-y pairs for 

the lips, for a total of 32 inputs, as shown schematically in 

figure 2.  

Figure 2. Data from 2 frames, one marked by circles, the other by 

asterisks (tongue-lip distances are not to scale). To the left, the 14 

tongue contour r values; at right, the 9 lip contour x-y values.   

The speech corpus consisted of phonetically balanced 6-

sentence Rainbow and 9-sentence Grandfather passages, 

each repeated twice, for a total of 30 sentences. The 

resulting 149.7 seconds of speech was stored as 4491 .jpg 

ultrasound frames and 30 11025 Hz .wav audio files. LSF-

based synthesis is known to be more robust against 

distortion compared to using, for example, LPC coefficients 

[8]. Twelve target LSF’s were calculated for each 33.3 ms 

frame using linear predictive coding and a hanning window 

with a symmetric half-frame overlap. The residual signal 

from each frame was also retained.  

The speech corpus is not large enough to warrant more 

aggressive modelling using, for example, Hidden Markov 

Models. The focus of this article is to evaluate the capacity 

of the images to furnish viable phonetic information on a 

frame by frame basis. A larger corpus is under study. 

3. MACHINE LEARNING ALGORITHM 

Multilayer perceptrons (MLP) [9] were used to perform the 

mapping between the 32 input variables and the 12 LSF’s. 

A separate network was used for each LSF, rather than a 

single fully connected net, in order to reduce the number of 

adjustable parameters in the model. Before training, a 

variable selection procedure [10] removed between 1 and 5 

of the least salient inputs from each LSF network. Thirty-

one outlier frames in which the automatic contour finding 

had failed were removed from the training set. The training 

minimized a weighted least squares cost function given by     
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(i is the LSF index, j the frame number) originally 

introduced by Laroia et al. [11] for weighting spectral 

distortion measures, favors examples in which the LSF 

being trained is near a formant. This gave a small 

improvement in performance over an unweighted error. 

Following the methodology used in [12], model selection 

was performed with the the virtual leave one out [13] (also 

called PRESS statistic [14]) method, since it allows to use 

the entire data set for training (earlier tests with 90% train 

and 10% test gave similar results). Models of increasing 

complexity were trained, and the best model for each LSF 

retained. Typically, the selected networks contained fewer 

than 5 hidden units.      

4. DISAMBIGUATION 

A first training pass revealed that the system was unable to 

faithfully reproduce the larger excursions of the LSF values, 

remaining instead in mid-range, nearer the mean. To explore 

the problem, a k-means algorithm [15] automatically 

clustered the data into 150 classes of tongue/lip contours, 

and the LSF vectors associated with each class examined. It 

was discovered that many input contour classes contained 

two, or even three clusters of LSF vectors, corresponding to 

voiced speech, silences, and/or fricatives. The learning 

algorithm in those cases had simply learned the mean of the 

often rather diverse LSF vectors present in the class. A 

contour class containing all three types of LSF is shown in 

figure 3. 

Figure 3. Tongue/lip contour class 140: the LSF trajectories (lower 

part of figure) form 3 clusters. The pictogram (upper part) 

identifies these as voiced, silent, and fricative LSF trajectories. 

The algorithm learns the average of the 3 classes, leading to poorer 

performance.

tongue lips
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That longer, intersyllabic silences exhibit ambiguity is 

not surprising, as the tongue and lips need not be in any 

particular position during such intervals (an unambiguous 

“rest” position of the tongue in very long silences was, 

however, observed). The implication is that users of a silent 

speech interface will have to learn to use some mechanism 

other than their glottis, presumably supplied by the 

interface, to control the excitation of their speech 

waveforms, much as is the case today for users of TES or 

electrolarynxes.  

What is more troublesome is ambiguity between voiced 

sounds and stops or fricatives, which are crucial to the 

production of intelligible speech. This result is unexpected, 

as stops/fricatives should in principle correspond to rather 

well defined configurations of the vocal apparatus. As the 

size of the corpus is not sufficient to study the phenomenon 

in detail, the decision was made to simply remove all 

silences, stops, and fricatives from the training set – leaving 

a total of 2559 voiced frames – and to concentrate upon the 

ability of the system to learn voiced speech. The selection of 

frames to remove was based on their Euclidean LSF 

distance from average silent and fricative frames. It is hoped 

that with a larger training set, more sophisticated image 

processing, and in the future the inclusion of additional 

sensors, the disambiguation of stops and fricatives will 

become possible.  

5. QUALITY ASSESSMENT 

The result of the training on voiced speech is shown in 

figure 4. LSF’s 2, and 4-8 appear to be the easiest to learn 

from the tongue and lip images. For the remaining LSF’s, 

essentially just the mean was learned. 

Figure 4. Scatter plot of training results for the 12 LSF’s. 

Horizontal axis: true LSF; vertically, learned LSF. 

The critical issue for a silent speech interface is 

intelligibility, which can only be evaluated using subjective 

listening tests carried out on synthesized passages. High 

quality synthesis will only be possible with a larger training 

corpus which allows the use of phonetic trajectory 

modelling. In this article, three simpler tests are employed in 

order to give some idea of the degree of intelligibility that 

one might expect in the final system.  

The tests chosen were: the mean RMS log spectral 

distortion, SD, due to the imperfect learning of the LSF’s; a 

differential mean opinion score (MOS) based on SD; and 

informal listening tests on LPC-reconstructed speech using 

residual and noise activations. The spectral distortion in dB 

is calculated in the classical way using:   
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where A, A’ are, respectively, the LPC polynomials derived 

from the original LSF’s and the learned LSF’s; and N = 

512, n0 = 6, n1 = 200, giving a frequency range of 129 – 

4307 Hz and a bin size of 21.5 Hz. The differential MOS 

score is evaluated with respect to a “transparent” 1 dB 

distortion using the empirical relation [16]:  
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For comparison, SD and MOS values were also calculated 

at two additional points: one from an early trial in which 

silences and fricatives were retained during training (but not

in evaluating SD), and another using the fixed, mean values 

of the true LSF’s. The informal listening tests consisted of 

having  a few colleagues listen to the synthesis results and 

give their impressions. As the training did not produce 

LSF’s for silences and fricatives, artificial values were used, 

consisting of the mean LSF vector over silent frames for the 

silences (coupled with a factor of 2 reduction in amplitude), 

and a random choice of 5 fricative LSF vectors taken from 

the original training set. Results are summarized in Table I. 

In the last line of the table appears the comparison made 

using the true original LSF values (artificial silences and 

fricatives were not used in line 5a, in order to have one 

“perfect” file). Files used in the listening tests (lines 1, 3, 

and 5) may be consulted online [17].  

The results show that the machine learning substantially 

improved both numerical performance and listening 

intelligibility as compared to using the means, and that 

removing silences and fricatives further improved the 

results on voiced frames. The listening test for line 2, 

though not included in the table/website due to differing 

conditions, gave results slightly worse than those of line 3. 

At SD = 4dB, the learned vocal LSF’s are still far from 

“transparent,” but, if MOS is any measure, should not lead 

to catastrophically lower intelligibility. This notion is 

supported by the listening tests, which suggest that from a 

perceptual standpoint, the learned LSF’s are almost as good 

as the original ones, at least for this type of test. In 

1 2 3 4 

5 6 7 8

9 10 11 12 

I  367



particular, using the learned LSF’s with the true residual 

gave very acceptable speech (line 3a). Of course, in a real 

silent speech interface, one will not have the residual, and 

the results obtained here using a noise activation are 

probably not yet good enough to be usable. There is also 

still the issue of the silences and fricatives. A more 

elaborate synthesis test on a larger corpus is being 

developed. 

Table I. Spectral distortion SD on voiced frames, MOS, and 

informal listening test results. MOS is measured with respect to a 

1 dB “transparent” benchmark. Artificial silences and fricatives 

were used on lines 1, 3, and 5b, as explained in the text. Files used 

in the line 1, 3, and 5 listening tests are consultable online [17]. 

(The listening test for line 2, not included on the website due to 

differing conditions, gave results somewhat worse than line 3.)   

Listening Test # Method SD  

dB MOS Activ. Comments 

a: resid very distorted 1 mean LSF’s 5.7 –2.5 

b: noise modulated noise 

2 LSF’s learned  

on all frames 

4.9 –2.2 _ 

a: resid a bit worse than 5a 3 LSF’s learned  

on voiced frames 

4.0 –1.8 

b: noise a bit worse than 5b

4 “transparent” 1.0   0.0 – 

a: resid perfect 5 true LSF’s 

on all frames 0.0 +0.76 b: noise whispery;  

fair intelligibility  

6. CONCLUSIONS AND PERSPECTIVES 

It has been shown that sagittal ultrasound tongue contours 

and lip profile information are not at present sufficient for 

learning the line spectral frequencies of silent and fricative 

speech frames. On voiced speech, however, the machine 

learning results seem very promising, from a spectral 

distortion and informal listening test viewpoint. If 

disambiguation of silent and fricative frames can be 

achieved, via a larger training corpus and more 

sophisticated image and speech processing tools, it thus 

seems likely that a real time silent speech interface based on 

ultrasound and lip video will be feasible. Work on a much 

larger corpus is currently underway.    
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