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ABSTRACT

Electropalatography is a well established technique for record-
ing information on the patterns of contact between the tongue
and the hard palate during speech, leading to a stream of
binary vectors called electropalatograms, consisting of ele-
cropalatographic events – contacts or non-contacts between
the tongue and the palate. A data-driven approach to map-
ping the speech signal onto electropalatographic information
is presented. A combination of Principal Component Analy-
sis and Support Vector Regression is used, yielding classifi-
cation scores of more than 93% on individual electropalato-
graphic events, for a single speaker. This may be viewed as
a special case of the, well-known in the speech community,
speech inversion problem which refers to inferring produc-
tion parameters from the speech signal.

1. INTRODUCTION

Electropalatography (EPG) [1] is a widely used technique for
recording and analyzing one aspect of tongue activity, namely
its contact with the hard palate during continuous speech. It
is well established as a relatively non-invasive, conceptually
simple and easy-to-use tool for the investigation of lingual
activity in both normal and pathological speech. An essential
component of EPG is a custom-made artificial palate, which is
moulded to fit as unobtrusively as possible against a speaker’s
hard palate. Embedded in it are a number of electrodes (62 in
the Reading EPG system, which is considered herein). When
contact occurs between the tongue surface and any of the elec-
trodes a signal is conducted to an external processing unit and
recorded. Typically, the sampling rate of such a system is
100-200 Hz. Thus, for a given utterance, the sequence of raw
EPG data consists of a stream of binary (1 if there is a contact;
-1 if there is not) vectors with both spatial and temporal struc-
ture. Figure 1 shows part of such a stream. Observation of
both temporal and spatial details of contact across the entire
palatal region can be very helpful to identify many phoneti-
cally relevant details of lingual activity.
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Electropalatography has been succesfully used to study a
number of phenomena in phonetic descriptive work, in studies
of lingual coarticulation and in the diagnosis and treatment of
a variety of speech disorders (an exhaustive listing of related
publicatons can be found in [2]). It has also been suggested
that visual feedback from EPG might be used in the context
of second language acquisition.

We are exploring the mapping from the acoustic speech
signal to electropalatographic information. In other words,
we want to train a system that, when presented with previ-
ously unobserved acoustics, outputs the corresponding EPG
sequences. We adopt an entirely data-driven approach, i.e.
we do not use any speech production intuitions at all. We use
a combination of Principal Component Analysis and Support
Vector Regression for the task.
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Fig. 1. Typical EPG sequence. Black squares indicate a con-
tact between the tongue and the palate. Segment is from the
utterance “The hallway opens into a huge chamber”. Symbol
p stands for /p/, @ for /@/ and n for /n/.

2. THE MOCHA DATABASE

The MOCHA (Multi-Channel Articulatory) [3] database is
evolving in a purpose built studio at the Edinburgh Speech
Production Facility at Queen Margaret University College.

During speech, four data streams are recorded concur-
rently straight to a computer: the acoustic waveform, sam-
pled at 16kHz with 16 bit precision, together with laryngo-
graph, electropalatograph and electromagnetic articulograph
data. EPG provides tongue-palate contact data at 62 nor-
malised positions on the hard palate, defined by landmarks
on maxilla. The EPG data are recorded at 200Hz.

The speakers are recorded reading a set of 460 British
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TIMIT sentences. These short sentences are designed to pro-
vide phonetically diverse material and capture with good cov-
erage the connected speech processes in English. All wave-
forms are labelled at the phonemic level.

The final release of the MOCHA database will feature up
to 40 speakers with a variety of regional accents. At the time
of writing this paper three speakers are available. For the ex-
periments herein, the acoustic waveform and EPG data, as
well as the phonemic labels for the fsew0 speaker, a female
speaker with a Southern English accent, are used.

3. PRINCIPAL COMPONENT ANALYSIS

Principal Component Analysis (PCA) is a well-known statis-
tical method with which one creates a data model by project-
ing his data onto a new set of axes. These axes are the direc-
tions in the data space where the data variation is maximum,
and are called the principal components. The projections of
the data are then very close to being uncorrelated among each
other. Practically, PCA is accomplished by applying eigen-
value analysis on the data covariance matrix. The eigenvec-
tors are then the principal components.

PCA has been used to explain the variance in EPG data
quite succesfully in the past [1].

4. SUPPORT VECTOR REGRESSION

The ε-SVR algorithm [4] is a generic supervised learning
method that may be used to map a real-valued feature vec-
tor to a real output value. Given n training vectors xi and a
vector y ∈ Rn such that yi ∈ R, one wants to find an estimate
for the function y = f(x). According to ε-SVR, this estimate
is:

f(x) =

n∑

i=1

(a∗

i − ai)k(xi,x) + b, (1)

where the coefficients ai and a∗

i are the solution of the quadratic
problem

maximize
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n∑
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(a∗

i + ai) +
n∑
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(a∗

i − ai)yi

−
1

2
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subject to

0 ≤ ai, a
∗

i ≤ C, i = 1, . . . , n, and
n∑

i=1

(a∗

i − ai) = 0.

(2)

where C > 0 and ε ∈ (0, 1) are parameters chosen by the
user.

The kernel function serves to convert the data into a higher-
dimensional space in order to account for non-linearities in

the estimation function. A commonly used kernel is the Ra-
dial Basis Function (RBF) kernel:

k(x,y) = exp(−γ ‖ x − y ‖2), (3)

where the γ parameter is selected by the user.

5. DATA PROCESSING

The MOCHA database includes 460 utterances of the fsew0
speaker. In order to render these data into input-output pairs
suitable for our purposes, we proceed as follows.

First, based on the label files we omit silent parts from the
beginning and end of the utterances. During silent stretches
the tongue can possibly take any configuration, something
that could pose serious difficulties to our task.

Next, using HTK, we extract from the speech signal the
12-order Perceptual Linear Predictive Coding Coefficients [5]
plus the log energy, using 16ms windows (256 points) with
5ms shifts (this is to match the 200Hz sampling rate of the
EPG data). Then, we normalize them in order have zero mean
and unity standard deviation.

In order to account for the dynamic properties of the
speech signal and cope with the temporal extent of our prob-
lem, we construct input vectors spanning over a large number
of acoustic frames. We use context windows of 20 frames (the
frame in question plus 10 past ones plus 9 future ones) with a
distance of 10 ms between consecutive frames (that is, one out
of two of our previously calculated frames). Thus, we have
260-dimensional (20 × 13) acoustic vectors, each spanning a
neighborhood of about 200 ms. (In accordance with works on
other acoustic-to-articulatory mapping tasks e.g. [6])

From the 460 available utterances the odd-numbered ones
will constitute what we will call our “extended training set”
and 46 (every 10th utterance beginning with the 6th) will con-
stitute our test set.

6. EXPERIMENTS

As a first step to our method we apply PCA on our extended
training set. We keep those principal components with cor-
responding eigenvalue larger than 1/100 of the largest eigen-
value. Figure 2 shows a schematic of these 38 principal com-
ponents.

As a result of PCA, each EPG vector in our data may be
decomposed (with a cost of a small loss in reconstruction ac-
curacy, depicted in the top subfigure of Figure 3) as:

yepg =

38∑

i=1

wiPCi. (4)

In this decompositions the PCs remain constant across the
dataset, while the ws vary. So, we may introduce a set of
mappings from our acoustic vectors (created as described) to
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Fig. 2. Principal Components of the EPG data. Each value
is represented by a square of size proportional to its absolute
value and color black or white whether it is positive or nega-
tive.

each of these w-trajectories. Thus, we have 38 distinct, uncor-
related, regression problems, each of which suits the ε-SVR
algorithm.

Our extended training set includes over 120,000 training
examples. This is far too big for SVR to train in a reasonable
amount of time. We employ a very simple trick to reduce
this amount of data by taking 1 out of 20 examples. Thus,
we arrive at a ‘reduced training set’ of about 6,000 examples,
which we actually use for SVR training. We choose the RBF
kernel with γ = 0.00384615 and select C = 1 and ε = 0.1.
We use the LibSVM software.

After testing, we measure the Pearson correlation score

r =

∑
i(oi − ō)(yi − ȳ)√∑

i(oi − ō)2
∑

i(yi − ȳ)2
, (5)

between the original (y) and the estimated (o) w-trajectories.
The results are shown in the middle section of Figure 3.

The next step is to invert PCA, reverting to the original
EPG space. For each EPG electrode and point in time, the
output is a real number roughly between −2 and 2. There are
two choices: we can either interpret the outputs as probabil-
ities that the certain EPG event is a contact or we can make
hard decisions by assigning negative values as non-contacts
and positive ones as contacts. The situation is depicted in Fig-
ure 4, where we show the ROC curves [7] (where the activity
of each electrode is considered as a separate binary clasifica-
tion task) for a couple of electrodes in two cases: before and
after making the hard decision.

Figure 5 summarizes the results of our method as a func-
tion of EPG electrodes. The left subfigure shows the percent-
age of contacts in the test set, which varies a lot among EPG
electrodes. The convention here is that the largest the black
square, the closer the percentage is to 100%. Using the same
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Fig. 3. Top to bottom: EPG reconstruction accuracy as a func-
tion of principal components used; Pearson correlation on in-
dividual w-trajectories as a function of the corresponding PC;
final EPG classification score as a function of the number of
PCs considered for the whole classification task.
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Fig. 4. ROC curves for two EPG electrodes.

convention, the middle subfigure shows the classification rate
achieved at each of the EPG electrodes, after making the hard
decision. The last subfigure shows the AUCs (that is, the area
under the ROC curve, which summarizes the curve into a sin-
gle number), before the hard decision. The bigger the square,
the closer the area to 1. There are a few electrodes for which
the ROC curve is not defined (the white “cross” in the mid-
dle); that is because for those electrodes there is actually no
contact at all in the test set (so, in way, the whole classifi-
cation effort is meaningless). Table 1 presents a very brief
summary of the results. We just point out that the overall
AUC is not just the mean value of the AUCs for individual
EPG electrodes. Instead, it is the area under the ROC curve,

Fig. 5. Results as function of EPG electrodes.
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Fig. 6. Detailed classification results. Big black and white
squares are contacts and non-contacts respectively correctly
classified. Small black squares are contacts classified as non-
contacts and small white squares are non-contacts classified
as contacts. Segment is form the phrase “Bright sunshine
shimmers on the ocean”. Symbol t stands for /t/, s for /s/
and uh for /2/.

plotted from the results of all 62 electrodes treated as a whole.
Overall chance level of the test set is 86,28%.

Min Max Overall
Contacts 0% 97,99% 25,99%
Classification Score 81,36% 100% 93,02%
AUC 0,78 0,98 0,93

Table 1. Summary of results. Min and Max represent the
minimum and maximum values across the individual EPG
electrodes.

Finally, Figure 6 presents the detailed outcome (after hard
decision) of testing our final system on a short speech seg-
ment.

7. DISCUSSION

We proposed a method for estimating EPG sequences from
the speech signal, with results that we believe are encourag-
ing.The proposed system seems to behave much better when
its outputs are regarded as probabilities of contacts than hard
decisions. At this point, though, we think that binary deci-
sions offer conceptual simplicity of the results.

It may be the case that we used more than enough prin-
cipal components for the task. The middle subfigure of Fig-
ure 3 shows that the performance of SVR seriously degrades
while moving to less significant principal components. In the
bottom subfigure, we plotted what the system’s performance
would be, if we used various numbers of principal compo-
nents. It seems that after the first 10-12 principal components,
overall classification rate reaches a plateau. After all, it is de-

sirable to explain EPG data in terms of as few parameters as
possible.

A major drawback of our method is that we used only a
small segment of the available data, since training on all data
would require quite huge training times. We are now work-
ing with mixtures of Support Vectors Regressors, following
ideas from [8], which require more reasonable training times,
already achieving much better correlation scores on the w-
trajectories.

The problem we dealt with includes a heavily structured
output space. Dealing with such spaces is a hot issue in recent
machine learning literature (e.g. [9]), and there may be meth-
ods that better account for the structure of our problem than
the method we proposed. We believe that the main strength
of our method, is that PCA is already an established tool for
the analysis of EPG data.
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