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ABSTRACT

We analyze automatic speech recognition (ASR) errors made
by a state-of-the-art meeting recognizer, with respect to locations
of overlapping speech. Our analysis focuses on recognition errors
made both during an overlap and in the regions immediately preced-
ing and following the location of overlapped speech. We devise an
experimental paradigm to allow examination of the same foreground
speech both with and without naturally occurring cross-talk. We then
analyze ASR errors with respect to a number of factors, including the
severity of the cross-talk and distance from the overlap region. In ad-
dition to reporting effects on ASR errors, we discover a number of
interesting phenomena. First, we find that overlaps tend to occur at
high-perplexity regions in the foreground talker’s speech. Second,
word sequences within overlaps have higher perplexity than those in
nonoverlaps, if using trigrams or 4-grams, but the unigram perplexity
within overlaps is considerably lower than that of nonoverlaps. An
explanation for this behavior is proposed, based on the preponder-
ance of multiple short dialog acts found in overlap regions. Third,
we discover that the word error rate (WER) after overlaps is con-
sistently lower than that before the overlap. This finding cannot be
explained by the recognition process itself; rather, the foreground
speaker appears to reduce perplexity shortly after being overlapped.
Taken together, these observations suggest that the automatic model-
ing of meetings could benefit from a broader view of the relationship
between speaker overlap and ASR in natural conversation.

1. INTRODUCTION

Speaker overlap is frequent in natural conversation, especially if
one considers units such as dialog acts, stretches of pause-delimited
speech, or speaker turns. For example, in a study of overlap in both
telephone conversations and multiparty meetings, it was found that
30% to 50% of all speech spurts (regions of speech in which a par-
ticular talker does not pause for more than half a second) include one
or more frames of simultaneous speech by another talker [7]. As de-
scribed in classic work on conversation analysis [5], speakers do not
alternate sequentially in a conversation, but rather they predict the
end of a current speaker’s turn using syntax, semantics, and prosody,
and often start speaking before the current speaker finishes.

In this work we examine overlap and its effects on ASR for
speech from recorded meetings. We hypothesize that overlaps could
affect recognition performance not only because of the well-known
effects of acoustic cross-talk, but also because speech near overlaps
could be inherently different in style or content from speech else-
where. We also hypothesize that the effect of overlaps may not
be confined to the regions in which they actually occur, but rather

that the effects extend in time before and/or after the overlap itself.
Note that we will use the term overlap to indicate situations in which
multiple talkers are speaking simultaneously. We will use the term
cross-talk to indicate cases in which a microphone associated with
one talker picks up the voice of another speaker during an overlap.

While general effects of overlap are well reported in the litera-
ture (e.g., [1, 3, 4, 7]), there is relatively little work quantifying such
effects under the different conditions that we consider. To the best of
our knowledge, the issue of the effect of overlaps on ASR errors ad-
jacent to overlap regions has received little attention in earlier work.
We analyze both the errors made during overlaps, and errors made
in nonoverlap regions directly before and after an overlap. We ex-
amine various factors, including the number of speakers involved in
the overlap, the presence or absence of cross-talk and its severity,
and the time distance from the overlap. We also look at language
model perplexity, as well as at words associated with particular dis-
course roles (filled pauses, backchannels, and discourse markers), in
an attempt to better understand the pattern of results.

2. METHOD

2.1. Data

We use 19.8 hours of recordings from 26 different meetings from
the 2002, 2004, and 2005 NIST meeting speech recognition eval-
uations. These meetings were from AMI (2), CMU (6), ICSI (6),
LDC (4), NIST (6), and VT (2), with the number of meetings from
each source given in parentheses. The number of participants varies
from three to nine, and the total amount of speech in the individual
headset microphones (IHMs) after segmentation is about 3.5 hours.
About 88%, 11%, and 1% of the speech frames are from nonover-
laps, single-speaker overlaps (i.e., one additional speaker), and two-
speaker overlaps, respectively, as determined from a forced align-
ment of the reference transcripts.

2.2. Recognition System

Recognition experiments are conducted using the 2005 ICSI-SRI
meeting system [8]. This system is adapted from SRI’s conversa-
tional telephone speech system to the meeting domain using a vari-
ety of meeting data (including about 72 hours from the ICSI meeting
corpus, excluding our test data). N -gram language models (LMs)
with order as high as four were trained on standard text and meeting
transcriptions as well as on Web texts. See [8] for full details. To
avoid confounds with automatic speech segmentation, we use man-
ual reference segmentations in our experiments, as our goal is to
study the effects of overlaps on automatic speech recognition.
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Fig. 1. Illustration of experiment conditions. When A is taken as
the foreground speaker, B and C are background speakers. For the
cross-talk condition, full original audio from B and C are added to
A. For the background-noise condition, B and C are added only
in the cases in which they do not contain any speech (for exam-
ple, during the overlap marked DURING, B is not added to A, and
only C is added). The regions marked BEFORE and AFTER in A
are nonoverlaps. Solid rectangles denote speech segments, obtained
from a forced alignment of reference segmentations.

2.3. Experiment Conditions

Since our goal is to study effects of overlaps on the ASR perfor-
mance, we need a principled method for controlling cross-talk and
its severity. To the best of our knowledge, there are no large publicly
available data sets with careful recording of the same speech with
and without cross-talk. In addition, the signal processing methods
for introducing or removing cross-talk are imperfect, especially for
the purposes of this study. Instead, we use synchronously recorded
speech from IHMs and speech/nonspeech alignments to create a ren-
dition of cross-talk that is accurate in terms of speech that has over-
lapped and cross-talk severity. Speech activity regions are defined to
be consecutive segments of spoken words uninterrupted by pauses
longer than 0.5 secs (the same definition as used for spurts in [7]).

First, each channel is normalized to have unit energy using the
average energy of speech samples in that channel. Next, to each
channel the remaining channels are added in a time-synchronous
fashion, after weighting by a factor to adjust cross-talk severity.
We refer to the recognition with such modified audio as the ‘cross-
talk condition’. When a particular channel is added to another one,
in addition to the speaker’s voice in that channel, any background
noise that is also captured by that channel is added as well. To pro-
vide a contrast condition for isolating effects of background noises,
we perform a second set of experiments, where a channel from the
remaining channels is added only if no speech activity is marked
for that channel. We will refer to this recognition condition as
the ‘background-noise condition’. The performance differences be-
tween the cross-talk and background-noise conditions should indi-
cate the cross-talk effects mainly due to the actual speech as opposed
to background noise. See Figure 1 for an illustration of the design.

It is important to note that the cross-talk condition contains only
speech that actually occurred at the same time. (We do not create
cross-talk using speech from different corpora or time spans!) Nev-
ertheless, the waveform addition is admittedly simplistic and does
not capture some aspects of cross-talk such as nonlinear frequency
weighting, room geometry, and reverberation. It also does not take
into account the cross-talk that might already present in the IHMs.
However, the effects from these factors should be smaller than those
due to overlapping speech, and would act only to exacerbate ef-
fects we report on here. Our study uses the performance difference
between results with and without cross-talk in the same region of

Condition Mixing Power WER Sub Del Ins

Clean N/A 25.6 12.8 10.8 2.0

Background 1/4 29.1 13.6 13.7 1.9
Cross-talk 1/4 36.4 16.4 16.2 3.8
Background 1/2 30.6 13.9 14.8 1.8
Cross-talk 1/2 38.8 17.5 17.1 4.2
Background 1 32.6 14.2 16.6 1.7
Cross-talk 1 41.7 18.6 18.7 4.4

Table 1. WERs, and substitution (Sub), deletion (Del), and inser-
tion (Ins) rates for different recognition conditions. The condition
Clean refers to the case when the original IHM audio is used, and
Cross-talk and Background are the cross-talk and background-noise
conditions, respectively (cf. Figure 1). Mixing Power is the square of
the linear mixing coefficient for the interfering channels, assuming a
coefficient of 1 for the channel being interfered.

speech, and at this level of relative comparison, small effects such as
reverberation would be roughly normalized out. To assess generaliz-
ability of our results, we repeat cross-talk experiments with mixing
powers 1/4, 1/2, and 1, corresponding to mild to severe cross-talk.

3. RESULTS

3.1. Results During Overlap

3.1.1. WER

WERs and their the breakdown into substitution, deletion, and inser-
tion rates for different recognition conditions are given in Table 1.
WERs reported in this table are cumulative for all segments of the
test data; analyses for overlaps and nonoverlaps are provided later.
We observe that both the cross-talk and background noise signifi-
cantly degrade recognition performance, the degradation being more
severe in the cross-talk condition. As expected, the background
noise does not introduce any additional insertions over the clean
condition, and most additional errors in the cross-talk condition are
insertions and deletions (which tend to associate with each other).
Such a dramatic increase in insertions and deletions for the cross-
talk condition is in agreement with the results in [8] for real-world
cross-talk, and provides a sanity check for the design.

To perform an analysis of errors with respect to overlaps,
we need a way to associate the recognition output with over-
lap/nonoverlap regions. Our recognition system outputs start and
end times for each recognized word. Thus, correctly recognized
words as well as insertions and substitutions are easily associ-
ated with the overlap/nonoverlap regions using the time information
(when a word falls within more than one region, we assign it to the
one with which it intersects most). Deletions are absent from the
recognition output; we use the time marks in a forced alignment of
reference transcripts to associate them with overlap/nonoverlap re-
gions. Overlap/nonoverlap time boundaries are determined entirely
from a forced alignment of reference transcripts, and are thus largely
independent of the recognition condition (cf. Figure 1).

Using this method, we found the errors in the nonoverlap re-
gions, and in the single- and two-speaker overlap regions. The
WERs for each region type are calculated from the number of sub-
stitutions, insertions, deletions, and reference words assigned to
the regions of that type. To facilitate the analysis, we display the
WERs first with respect to the each recognition condition across
overlap/nonoverlap types in Figure 2, and then with respect to the
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Fig. 2. WERs for the Clean, Background Noise (BN), and Cross-
Talk (CT) conditions with the mixing powers 1/4, 1/2, and 1.
For each condition, we display the WER in a stacked fashion for
nonoverlaps, and single-speaker and two-speaker overlaps.
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Fig. 3. WERs for nonoverlaps (0) and single-speaker (1) and two-
speaker (2) overlaps. For each nonoverlap/overlap type and mixing
power, the WERs are displayed in a stacked fashion for the clean,
background-noise, and cross-talk conditions, in order.

overlap/nonoverlap types across different recognition conditions in
Figure 3. We find that cross-talk significantly increases WER (much
more so than background noise), and that two-speaker overlaps
cause more errors than single-speaker overlaps. The observations
from these plots are expected, but provide a quantification of errors
due to the different conditions.

3.1.2. Perplexity

Perplexities for the nonoverlap and single- and two-speaker overlap
regions are displayed in Figure 4. The perplexities here are those of
the reference words corresponding to these regions in the foreground
speaker’s speech, since we would like to find out whether the speech
from overlaps or nonoverlaps could be inherently more difficult to
predict lexically. As shown in Figure 4, there is a curious reversal
of the relationship between perplexity and the number of simultane-
ous speakers. Typically, perplexity of higher-order n-grams should
follow the same pattern as that for lower orders. In overlap regions,
however, something different occurs. We note that while perplexities
here are aggregated over the different sites at which meetings were
collected, individual sites show a similar overall pattern, suggesting
robustness of the results.

From inspection of individual n-grams, we believe the behavior
can be explained as follows. We looked first at unigrams, and hand-
coded each case as either a backchannel (e.g., “uhhuh”,“yeah”), dis-
course marker (e.g., “well”), filled pause (“um”, “uh”), or none of
the above. We found that overlaps contained far more backchannels
and discourse markers than nonoverlaps, and the degree of increase
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Fig. 4. Perplexities of the foreground reference words during
nonoverlaps (0), and single-speaker overlaps (1), and two-speaker
overlaps (2), for various n-gram LMs.

for both types of events was larger when the number of simultane-
ous speakers was higher. Relative rates of filled pauses, on the other
hand, were stable or slightly decreasing with the number of simul-
taneous talkers. These findings make sense; most of these overlaps
are associated with backchanneling rather than holding the floor. Be-
cause backchannels are frequent unigrams in LMs trained on spon-
taneous speech, unigram perplexity is lower when the number of
overlapping talkers is higher.

What is very interesting is what happens for longer n-grams. We
illustrate using 4-grams. In nonoverlap regions, 4-grams tend to be
within-sentence sequences, such as “might be able to” and “just a
matter of”. If we look at overlap regions, however, we see far more
cases like those below:

(a) “right right right so” (has repeated backchannel)
(b) “with yeah yeah an” (has backchannel inside phrase)
(c) “right i i am” (has sentence-initial disfluency)

In (a) and (c), the speaker produces multiple dialog acts; in (a) and
(b) he produces multiple backchannels; in (b) he inserts a backchan-
nel within a syntactic unit; in (c) he makes sentence-initial disfluen-
cies. All of these behaviors are frequent at turn exchanges, where
speakers reinforce each other, negotiate for the floor, and produce
turn-initial discourse elements until the floor is determined [5]. In
ASR language models however, such 4-grams are relatively rare,
since most n-gram tokens come from regions inside single-speaker
turns in which the speaker has already obtained the floor. Inside
these single-talker stretches, there is little reason to backchannel.
And while disfluencies can occur anywhere, their floor-grabbing
function is used more at turn exchanges than within turns [6].

3.2. Results Surrounding Overlaps

Using the method described in the previous section, we associated
errors in the recognition output with nonoverlap regions directly be-
fore and after an overlap (cf. Figure 1). We restricted the analysis to
errors completely included within such nonoverlap regions, in order
to avoid any bias from overlaps.

3.2.1. WER

In Figure 5, we plot WER over before- and after-overlap regions for
different recognition conditions, as a function of the distance from
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Fig. 5. WERs for Clean and Cross-Talk conditions with various
gains, as a function of distance from the overlap (in seconds). Neg-
ative distances correspond to before overlaps, and positive distances
to after overlaps. Note that the WER at each point represents data
coming from that distance only (i.e., results are not cumulative).

the overlap. As expected, the WER decreases as a function of dis-
tance from the overlap, but there is an asymmetry in the errors be-
fore and after overlaps: WERs are significantly higher just before the
overlap than it is after the overlap. This finding is consistent across
different recognition conditions, and across meetings from differ-
ent sources. This asymmetry is unlikely to be due to the recognizer
itself, because the decoding is not strictly forward in time (i.e., it
proceeds in a “forward-backward” fashion as opposed to Viterbi de-
coding, using word-confusion networks, n-best list scoring, speaker
adaptation, and so on [8]). It is also unlikely to be due to reverbera-
tion because the meetings take place in relatively small rooms where
reverberation effects are less than 250 msecs.

3.2.2. Perplexity

To further investigate whether the lower error rate just after the over-
lap can be attributed to lexical effects, we calculated perplexities of
the reference words in these regions (cf. Figure 6). A first observa-
tion from the figure is that rates during overlaps (middle bars, at 0)
follow the same patterns as shown earlier, in Figure 4. They show
low unigram perplexities, but high trigram and 4-gram perplexities.
The new information in Figure 6 is the relative perplexities before
and after overlap. For all n-gram orders, perplexity is lower after
overlaps than before them. The same general pattern holds for each
of the different meeting collection sites, so it appears to be a robust
finding. Although further investigation is needed, we hypothesize
from inspection that that the lower perplexity after overlaps stems at
least in part from a tendency to begin new sentences at this location.

4. DISCUSSION

We have analyzed ASR errors in multiparty meetings with respect
to regions before, during, and after speaker overlaps. Using an
approach that allowed us to compare the same actually-overlapped
foreground speech with ‘clean’ and ‘background-noise’ versions, we
assessed the relative detriment to ASR of overlapping speech un-
der different cross-talk gain conditions. Further analyses addressed
questions that to our knowledge have not been studied on automatic
recognition of meeting speech. We found that overlap tends to start
at times during which the foreground talker is producing relatively
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Fig. 6. Perplexities of the foreground reference words before (-),
during (0), after overlaps (+) with respect to various n-gram LMs.

high perplexity word sequences. We also found that the relationship
between perplexity and the number of simultaneous talkers is pos-
itive for longer n-grams, but negative for unigrams. This appears
to be due to the preponderance of multiple short dialog acts within
overlaps, particularly of backchannels. The short dialog acts are fre-
quent unigrams, but their sequencing is not well represented in statis-
tical LMs, since such events typically occur only at turn beginnings.
We discovered an asymmetry in ASR errors made before versus af-
ter overlaps, which cannot be explained by properties of ASR nor
of the experimental setup. The asymmetry occurred for each of the
different sites represented in the test data, and appears to reflect dif-
ferences in the speech itself. After being overlapped, the foreground
talker temporarily drops to lower-perplexity word sequences. These
results suggest that automatic modeling of meetings can benefit from
a broader view of the relationship between overlap and ASR. For in-
stance, one may want to use separate models adapted by proximity
to overlaps. Future work should further investigate the relationship
between overlap, ASR, and discourse phenomena.
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