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ABSTRACT

This paper describes a novel approach to duration information 

modeling for speech recognition. To eliminate the influence of 

speaking rate on the duration model, we propose a model utilizing 

the duration ratios of two successive syllables by log-normal 

distributions. We refer to this model as a syllable duration ratio 

model (SDRM), and compare it with a syllable duration model 

(SDM) that represents the duration of the syllable itself. These 

duration models are compared in isolated word and connected digit 

recognition tasks under noisy conditions. Experimental results 

show that the SDRM outperformed the SDM, and reduced the 

errors by approximately 30% compared to the baseline system 

without duration model at 15dB or higher SNR in 10 digits 

recognition tasks. In addition, we show that the SDRM is robust 

with respect to the difference in speaking rate between training and 

test data. 

1. INTRODUCTION 

Modeling duration information is one of the effective ways to 

improve the performance of speech recognition systems. Although 

conventional hidden Markov models (HMMs) represent duration 

information implicitly by their state transition probabilities, it is 

well known that they are inappropriate for modeling the actual 

durations of states, syllables and words. Generally, it is expected 

that a duration model can reduce the number of deletion and/or 

insertion errors made by a speech recognition system. In addition, 

duration information is necessary to discriminate between certain 

words in some languages. From these points of view, there have 

been many attempts to incorporate explicit duration models into 

speech recognition systems [1], [2]. 

One of the problems with applying duration information to 

speech recognition is that duration is greatly influenced by the 

speaking rate. The difference in speaking rate between training and 

test data causes degradation of the recognition accuracy. To 

overcome this problem, Zhu and Lee [3], and Qingwei, et al. [4] 

have proposed construction of duration models separately for 

different speaking rate classes, and Dong and Zhu [5] have 

proposed normalization of duration by the estimated speaking rate. 

However, an error in the speaking rate estimation has a large 

influence on the results. Alternatively, to reduce the influence of 

speaking rate, stepwise duration estimation has been considered [3], 

[6]. In [3], [6], the duration of the current unit was estimated from 

the previous one by a conditional distribution or a linear regression. 

In the linear regression, the error distribution is implicitly assumed 

to be independent of the duration of the previous unit. However, 

the error distribution depends on the speaking rate and the duration. 

Therefore, the variance of the error distribution should be different 

in fast speech and slow speech. 

In order to avoid the influence of speaking rate on the 

duration model, this paper proposes a novel technique for duration 

modeling based on duration ratio. Our duration model does not 

need to estimate the speaking rate. The idea and methods of the 

syllable duration ratio model are introduced in Section 2. In 

Section 3, experiments to evaluate the proposed model are 

described. Conclusions are presented and problems to be tackled in 

the future are indicated in the final section. 

2. SYLLABLE DURATION RATIO MODEL 

The rhythm of speech is one of the important factors for speech 

perception. It is known that there are different kinds of rhythm, 

such as stress-timed (e.g. English), syllable-timed (e.g. French) 

and mora-timed (e.g. Japanese) rhythms. Although the duration of 

units composing the rhythm depends on the speaking rate, it is 

assumed that the relation of successive rhythmic units is less 

subject to speaking rate than other units such as phones. As a result, 

the ratio of successive units becomes almost constant, even if the 

speaking rate varies from training data to test data. 

We adopt syllables as the duration unit, and model the 

duration ratio of the current syllable to the previous one by a log-

normal distribution. We refer to this duration model as a syllable 

duration ratio model (SDRM). Here, we assume that the 

distribution depends on syllable pairs only, though it may depend 

on phonetic and linguistic contexts of the pair such as position in 

the utterance. The model of a syllable to silence and silence to a 

syllable are undefined. The SDRM is applied within N-best 

recognition, rescoring N-best results using the SDRM scores. 

Figure 1 shows an example of improving discrimination by 

use of the SDRM. Assume that three candidates were obtained 

from an input of “6” (“ro-ku” in Japanese): “5 6” (“go -ro-ku”,

where “ ” denotes a long vowel) which has an insertion error, “5 

9” (“go -kyu ”) which has a substitution and an insertion error and 

“6” (“ro-ku”) which is correct. The first candidate has an inserted 

digit “5” (“go ”) with short duration, which has also reduced the 

duration of “ro”. Since the syllable duration ratio of “ro” to “go ”

and “ku” to “ro” are outliers of the SDRM, the first candidate 

yields a low log-likelihood SDRM score. For the third candidate, 

the syllable duration ratio of “ku” to “ro” is in the middle of the 

distribution of “ku” to “ro”. As a result, the log-likelihood SDRM 

score is expected be higher than for the first candidate, so the 
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insertion error can be suppressed by the SDRM score. Moreover, 

the difference of the SDRM distribution between the syllable

duration ratio of “kyu ” to “go ” and that of “ku” to “ro” makes it 

possible to suppress the substitution and insertion errors of the

second candidate. 

2.1. Model training

Duration statistics for training the SDRM are obtained by running 

a forced alignment on the training data using a baseline HMM set.

The SDRM models each duration ratio for all observable syllable

pairs by a log-normal distribution. 

Since it is difficult to provide sufficient data for all possible 

syllable pairs, decision tree-based clustering based on the 

minimum description length (MDL) criterion [7] is applied to the

SDRM in a manner similar to state tying of triphone HMMs. 

2.2. N-best rescoring 

For the experiments in this paper, the duration models investigated

are applied to N-best rescoring. The N-best lists for each utterance 

were generated by a baseline system without a duration model. 

The score for each candidate on the list is rescored by the duration 

model. The new score (SNEW) is defined as the weighted sum: 

ADNEW SwSwS )1(

where w is the weight (0 w  1) for the log-likelihood score of

the SDRM (SD) obtained from the time alignment result for each 

candidate by the baseline system, and SA denotes the log-likelihood 

score of the acoustic model. SD and SA are normalized by the 

number of syllable pairs and the number of frames, respectively.

The candidate with the best new score is chosen as the recognition

result. We used 10-best candidates in the experiments described 

below.

Figure 2. Distribution of speaking rate for each data set.

3. EXPERIMENTAL RESULTS AND DISCUSSIONS 

3.1. Database and setup 

Recognition experiments were conducted on isolated word and 

connected digit tasks. We compared the SDRM with a syllable

duration model (SDM), which modeled the distribution of syllable

duration by a log-normal distribution. 

Training data for the acoustic model, SDM and SDRM

consisted of read Japanese short sentences of about 75 hours long

by around 300 speakers. The speech data was sampled at 11025 Hz.

To simulate a noisy environment, in the training of the acoustic

model, stationary car noise was artificially added to the equally

split training data at signal-to-noise ratio (SNR) of  (clean 

speech), 18, 15, 12, 7, 5 and 0dB. Speech signals were windowed 

by a 256-point (about 23ms) Hamming window with 88-point

(about 8ms) shift. The feature vector consisted of 12 MFCCs, log

energy and their first and second derivatives. The acoustic model

was a standard 3-state left-to-right triphone model using six 

Gaussian mixtures with diagonal covariance matrices per state.

State tying was performed using decision-tree based clustering, so

that the number of HMM states was reduced to about 1000. The 

SDM and SDRM were trained from the original clean data. 

Three test sets were used for the experiments: one hundred 

Japanese city names by 40 speakers (100-CITY), 3 or 4 digits by

20 speakers (3, 4-DIGIT) and 10 digits by 80 speakers (10-DIGIT).

Stationary car noise was added to the test data to evaluate the

robustness of the SDRM to noise. The added noise was different 

from the noise used in the training. The start and the end of each 

utterance were assumed to be known in all the experiments.

There were two reasons for selecting the three test sets. First, 

these data simulated elementary in-car navigation tasks, which are 

major applications of speech recognition. Second, there was a 

difference in speaking rate between the training data and the test

data.

Figure 2 shows the speaking rate distribution for each data set.

The speaking rate is measured by the number of morae per second. 

In the figure, “Sentence” (the dotted line) is the distribution of the 

training data, and can be seen to have a faster speaking rate than 

the other data used in the experiment. The 10-DIGIT data varies 

more in speaking rate than the 3, 4-DIGIT data. The distribution of

100-CITY has the slowest speaking rate among these data sets.

Utterance accuracy (word and sentence accuracy) and relative 

error rate reduction (RERR) were used to measure the change in 

performance from the baseline system for each task. The RERR is

defined by
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Figure 1. Illustration of improved discrimination by use of the

SDRM.
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Table 1. Utterance accuracy on 100-CITY task. 

SNR Baseline SDM SDRM

0dB 74.8% 75.6% 77.2%

5dB 87.7% 87.8% 89.2%

15dB 94.7% 94.7% 95.6%

25dB 96.5% 96.5% 97.3%

Clean 96.9% 96.9% 97.4%
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Figure 3. Relative error rate reduction on 100-CITY task. 
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where UA is the utterance accuracy of baseline, and UD is the 

utterance accuracy with the SDM or SDRM.

3.2. Isolated word recognition test 

First, isolated word recognition results are shown. The test data

was 100-CITY. The N-best rescoring weight was selected as the 

average of leave-one-out cross-validation run at each SNR. Table 1

presents the utterance accuracy of each model. Shown in the 

“Baseline” column are the results of the acoustic model only.

Figure 3 illustrates the relative error rate reduction at each SNR. 

Table 1 and Fig. 3 show that the SDRM is effective under all SNR

conditions, and the SDRM achieves a relative error rate reduction 

more than 15% at 15dB or higher. However, the SDM has almost 

no effect under all SNR conditions. The SDRM can improve 100-

CITY results in spite of the difference from the training data in 

speaking rate. 

From the recognition results, we found that the utterances 

“Hon-Jo ” mistaken for “Hon-do” in the baseline model were

corrected by the SDRM because of the difference in the vowel 

duration. However, the SDRM could not correct some confusion 

such as “ki-ryu ” with “chi-ryu ”, because the syllable duration

similarity made classification by duration difficult. These results

indicate that (as expected) the SDRM is more effective when the

difference in duration is important for distinguishing among 

candidates.

3.3. Connected digit recognitions tests 

Connected digit recognition tests were conducted to show the 

validity of the SDRM in continuous speech recognition. 

For both the 3, 4-DIGIT and 10-DIGIT tests, we used an open 

digit loop grammar which allowed any digit sequence with

optional silence between digits. The silence segment between

syllables from the time alignment result was ignored for the SDM 

and SDRM. The insertion penalty was optimized for utterance

Table 2. Utterance accuracy for 3, 4-DIGIT task. 

SNR Baseline SDM SDRM

0dB 38.6% 50.4% 45.1%

5dB 74.0% 81.9% 79.4%

15dB 95.1% 96.5% 96.6%

25dB 96.7% 97.4% 97.6%

Clean 96.5% 97.0% 97.4%
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Figure 4. Relative error rate reduction on 3, 4-DIGIT task. 

Table 3. Number of Errors for 3, 4-DIGIT task.

Model SNR Del. Sub. Ins.

5dB 160 200 13Baseline

25dB 14 7 14

5dB 55 157 23SDM

25dB 2 6 19

5dB 115 163 12SDRM

25dB 6 7 12

accuracy in 15dB by preliminary experiments, and the N-best

rescoring weight was selected as the average of leave-one-out 

cross-validation run at 15dB. These parameters were used in all 

SNR conditions. 

Table 2 shows the utterance accuracy for 3, 4-DIGIT, and the

relative error rate reduction is illustrated in Fig. 4. Table 2 and Fig. 

4 indicate that the SDM outperforms the SDRM when the SNR

goes below 15dB. However, it also shows that the SDRM yields

more than 25% relative error rate reduction and has higher 

performance than the SDM at 15dB or higher. Table 3 shows the

number of errors (deletion, substitution and insertion) for 3, 4-

DIGIT at 5 and 25dB. The SDM score for short duration units 

tends to be higher than that for long units, since the SDM was

trained on training data with a faster speaking rate than in 3, 4-

DIGIT. Accordingly, the SDM reduces the deletion errors at the 

cost of increasing insertion errors. The SDRM, however, can 

improve the utterance accuracy by decreasing deletion errors 

without increasing other errors. 

Table 4 shows the utterance accuracy for 10-DIGIT. The 

SDRM achieves about 30% relative error rate reduction at 15dB or 

higher as shown in Fig. 5. Table 5 shows the number of errors for

10-DIGIT at 5 and 25dB. While the SDM can reduce deletion 

errors, insertion errors increase and cancel out the effect of the

reduction in deletion errors. As a result, the SDM yields slight 

improvements in all SNR conditions. However, the SDRM can 

reduce all kinds of errors, and gives better discrimination despite 

the difference from the training data in the speaking rate. 
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Table 4. Utterance accuracy for 10-DIGIT task.

SNR Baseline SDM SDRM

0dB 49.8% 51.0% 57.6%

5dB 72.5% 73.2% 78.5%

15dB 86.6% 86.9% 90.9%

25dB 87.1% 87.2% 91.1%

Clean 82.8% 82.9% 88.1%
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Figure 5. Relative error rate reduction on 10-DIGIT task.

Table 5. Number of Errors for 10-DIGIT task.

Model SNR Del. Sub. Ins.

5dB 572 639 195Baseline

25dB 122 150 371

5dB 513 640 222SDM

25dB 107 148 399

5dB 307 639 163SDRM

25dB 69 145 230

3.3. Robustness against speaking rate 

Figure 6 shows the log-likelihood scores of the SDM and SDRM 

vs. speaking rate on the isolated word task (100-CITY). The points 

in the figure represent the median of the score distribution, and 

error bars correspond to 25% and 75% quantiles. In the figures, the 

score of the SDM is shown on the left and that of the SDRM on the 

right. Figure 6 shows that the score of the SDRM is less subject to

speaking rate, whereas the score of the SDM varies with the 

change in speaking rate. 

This result indicates that the SDRM is less sensitive to the 

difference in speaking rate between the training and the test data. 

As a result, the SDRM could improve all the evaluated tasks, even

though the speaking rate was different from the training data. In 

contrast, the difference in speaking rate is considered to influence

the score of the SDM. This accounted for the previous

experimental results in which the SDM scarcely improved the 

utterance accuracy of the 100-CITY and 10-DIGIT tasks. 

4. CONCLUSIONS 

In this paper, the syllable duration ratio model (SDRM) which

models the duration ratio of successive syllables was proposed to 

model duration information with robustness against speaking rate. 
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Figure 6. Log-likelihood score distributions of the SDM and

SDRM on 100-CITY task. 

Experimental results showed that the SDRM improved the

utterance accuracy at all SNR and on all tasks compared to a

baseline HMM system and a syllable duration model (SDM), with 

a relative error rate reduction of about 30% at 15dB or higher SNR

for 10 digits recognition. The SDRM was shown to be able to

distinguish between candidates with different syllable durations 

and reduce deletion and/or insertion errors. It was also shown that

the log-likelihood score and the recognition results achieved with 

the SDRM were robust against speaking rate variation between the 

training and the test data. 

Future work will include evaluation of the technique on

languages other than Japanese and the influence of real noisy

conditions such as the Lombard effect. 
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