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ABSTRACT

Recent results with phone-posterior acoustic features estimated by
multilayer perceptrons (MLPs) have shown that such features can
effectively improve the accuracy of state-of-the-art large vocab-
ulary speech recognition systems. MLP features are trained dis-
criminatively to perform phone classification and are therefore,
like acoustic models, tuned to a particular language and applica-
tion domain. In this paper we investigate how portable such fea-
tures are across domains and languages. We show that even with-
out retraining, English-trained MLP features can provide a signifi-
cant boost to recognition accuracy in new domains within the same
language, as well as in entirely different languages such as Man-
darin and Arabic. We also show the effectiveness of feature-level
adaptation in porting MLP features to new domains.

1. INTRODUCTION

Traditionally, the feature extraction front ends of speech recog-
nition systems have been designed and optimized by hand and
heuristics, sometimes guided by knowledge of the human audi-
tory system [1]. A more satisfying approach would be to perform
feature extraction in a data-driven manner, according to an objec-
tive function closely related to the recognition task, or at least
to train the front end’s parameters according to such a criterion.
This was achieved in the Tandem approach to hybrid connection-
ist/HMM modeling [2], based on prior work in neural-network-
based acoustic modeling [3]. The Tandem approach consists of
training a multilayer perceptron (MLP) to perform phone posterior
estimation at the frame level, based on traditional (e.g., perceptual
linear prediction—PLP) features, and then to use these posteriors
(possibly after further transformations, such as log and dimension-
ality reduction) as features in a standard Gaussian mixture-based
hidden Markov model (HMM) recognizer. The immediate advan-
tage of this approach is trainability of the features, alleviating the
modeling burden on Gaussian models by what amounts to a non-
linear transformation optimized for phone discrimination. Further
advantages are that the MLP can be given multiple frames of in-
put features, thereby enabling modeling of a larger temporal win-
dow. In a further development, the Tandem approach has been
extended to include multiple MLPs, based on different input fea-
tures and operating at different time scales, whose output poste-
riors are combined into a single, more accurate, and more robust

estimate [4, 5]. We have recently shown that such multiple MLP-
based feature extractors can give significant error reductions even
in complex, state-of-the-art large vocabulary recognition systems
[6].

Since the feature extraction algorithm is now trained from
data, the acoustic model of the recognizer is effectively factored
into two components: one or more MLPs for feature estimation,
and the traditional Gaussian mixture models. This raises the ques-
tion of how portable (domain-independent) the feature extraction
is, since generalization is a perennial problem with standard acous-
tic models. In the extreme case, we can ask if such features trained
on one language are suitable for another. If the features did not
generalize to different data sources, trainability would seem more
of a liability than an advantage for many applications. Conversely,
if it turned out that features, once trained, give an advantage on un-
seen kinds of speech we would have a powerful tool for leveraging
training data across domains and languages.

In this paper we address the portability question by using a set
of MLP features previously trained on English conversational tele-
phone speech, and found very effective when tested on matched
data [6]. We tested these features on a very different English recog-
nition task, multiparty meetings, which also allowed us to inves-
tigate simple approaches to feature (in addition to model) adap-
tation. Finally, we tested generalization to Mandarin and Arabic
conversational telephone speech.

2. RECOGNITION SYSTEM

We briefly outline SRI’s English conversational telephone speech
(CTS) recognition system. This was the system for which MLP
features were originally trained and optimized.

2.1. MLP features

In our system, MLP features augment (rather than replace) stan-
dard Mel-frequency cepstral coefficient (MFCC) and PLP fea-
tures. MLPs are trained by taking various snapshots of the time-
frequency plane as input. The MLP posteriors can later be com-
bined for higher accuracy. We have found that posteriors from
MLPs focusing on information derived from long time chunks of
500 ms can be effectively combinedwith posteriors from MLPs fo-
cusing on shorter-duration chunks of 100 ms. The combined pos-
terior goes through further transformation including log, principal
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Fig. 1. SRI CTS recognition system. Rectangles represent decoding
steps. Parallelograms represent decoding output (lattices or 1-best hy-
potheses). Solid arrows denote passing of hypotheses for adaptation or
output. Dashed lines denote generation or use of word lattices for decod-
ing. Crossed ovals denote confusion network system combination. The
two decoding steps in light gray can be run by themselves to obtain a “fast”
system.

component analysis (PCA), and truncation in the way described in
[7], and is then concatenated with the traditional features such as
MFCC or PLP to form the augmented feature vector for Gaussian
modeling.

For both types of MLPs, the output targets are the 46 phones
used in the SRI CTS recognition system. The MLP focusing on
medium-term information takes 9 consecutive frames of PLP fea-
tures, as well as their first and second deltas, as inputs. To extract
long-term information, we use a variant of the Temporal Patterns
(TRAPs) MLP architecture [4] called Hidden Activation TRAPs
(HATs) [8]. A HATs feature extractor consists of two stages of
MLPs. The first stage extracts phonetically discriminant informa-
tion from 500 ms of critical band energies, while the second stage
merges this information and produces phone posteriors. The phone
posteriors from both systems are merged on a per-frame basis us-
ing a weighted average, where the weights are the inverse entropy
of the phone posteriors coming from the corresponding system [9].

The feature MLPs were trained separately for male and female
speakers, on a total of 1800 hours of CTS data from the Fisher
and Switchboard corpora. Each of the 4 MLPs (male/female, Tan-
dem/HATs) had about 8 million parameters. Various optimizations
and heuristics were employed [6] to achieve an acceptable training
time (5 weeks).

2.2. Decoding architecture

The recognition architecture is depicted in Figure 1. An “upper”
(in the figure) tier of decoding steps is based on MFCC features; a
parallel “lower” tier of decoding steps uses PLP features [1]. The
outputs from these two tiers are combined twice using word con-
fusion networks (denoted by crossed ovals in the figure). Except
for the initial decodings, the acoustic models are “cross-adapted”
to the output of a previous step from the respective other tier us-
ing maximum-likelihood linear regression (MLLR) [10]. The ini-
tial decoding steps in each tier also use MLLR, though with a a
phone-loop model as reference.

Lattices are generated initially to speed up subsequent decod-
ing steps. The lattices are regenerated once later to improve their
accuracy, after adapting to the outputs of the first combination step.
The lattice generation steps use noncrossword (nonCW) triphone

Table 1. Results (WER) on RT-04F English CTS development
and evaluation sets. “Fast” refers to the 3xRT 2-stage recognition
system, whereas “Full” denotes results with the full evaluation sys-
tem.

RT-04F devtest RT-04F eval
Features Fast Full Fast Full
Baseline 18.2 17.2 21.7 20.3
w/MLP features 16.8 15.5 20.0 18.3

models, while decoding from lattices uses crossword (CW) mod-
els. The final output is the result of a three-way system combina-
tion of MFCC-nonCW, MFCC-CW, and PLP-CW models. Each
box in the diagram corresponds to a complex recognition step in-
volving a decoding run to generate either lattices or N-best lists,
followed by a rescoring of these outputs with higher-order lan-
guage models, duration models, and a pause language model [11].

The acoustic models employed in decoding use standard nor-
malization techniques: cepstral mean and variance normalization,
vocal tract length normalization (VTLN) [12], heteroscedastic lin-
ear discriminant analysis (LDA) [13, 14], and speaker-adaptive
training based on constrained MLLR [15]. All acoustic models
are trained discriminatively using the minimum phone error (MPE)
criterion [16]. Acoustic models are trained on about 2300 hours of
Fisher and Switchboard CTS data. The baseline language models
(LMs) are bigrams (for lattice generation), trigrams (for lattice de-
coding), and 4-grams (for lattice and N-best rescoring). The CTS
in-domain training materials are augmented with data harvested
from the Web, using a search engine to select data that is matched
for both style and content [17].

The entire system runs in about 13 times real time on a
3.4 GHz Intel Xeon processor. For many scenarios it is useful
to use a “fast” subset of the full system consisting of just two de-
coding steps (the light-shaded boxes in Figure 1); this fast system
runs in about 3 times real time (3xRT) and exercises all the key
elements of the full system except for confusion network combi-
nation.

2.3. In-domain results

As described in [6], it is suboptimal to augment all acoustic models
in a complex recognition like the one in Figure 1 with MLP fea-
tures. In our system, we obtained best results by using MLP fea-
tures only in the top tier of recognition steps, that is, with MFCC-
based models. PLP-based (lower tier) models are left unchanged.

Using this setup, we evaluated the effect of adding MLP fea-
tures on the NIST RT-04F English CTS development and evalua-
tion testsets, each consisting of 72 telephone conversations. Re-
sults are summarized in Table 1. The relative word error rate
(WER) reduction using the full system is identical on both test-
sets, 9.9% (2.0% absolute reduction on the evaluation set).

3. CROSS-DOMAIN EXPERIMENTS

We now investigate how the MLP features perform in another En-
glish recognition task. The task was the recognition of multiparty
meetings, as required for the NIST RT-05S evaluation. We fo-
cus here on the recognition from individual head-mounted micro-
phones (the “IHM” condition in the NIST evaluation). The meet-
ing recognition system was an adapted version of the CTS system
described above [18]. The meeting speech recordings were down-
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Table 2. Results (WER) on IHM meeting recognition using various sets
of acoustic models and features. Columns 2 and 3 indicate whether the
Gaussian models or the MLP features were adapted to the meeting do-
main. “None” in column 3 indicates that MLP features were not used at
all, whereas “no” means that CTS-trained MLPs were used.

Gaussians MLP
adapted? adapted? RT-04S RT-05S

a no no 28.9 28.6
b no yes 28.4 27.0
c yes none 29.4 28.6
d yes no 28.6 26.9
e yes yes 28.3 26.2

sampled to 8 kHz to match the bandwidth of the CTS models. All
CTS acoustic models were adapted to the available IHM meeting
training data (about 100 hours), using the maximum a posteriori
(MAP) criterion, with a combination weight empirically optimized
on held-out data. The language models were retrained using avail-
able meeting transcripts, as well as backgrounddata from CTS and
Web data. An audio preprocessing step was added to eliminate
crosstalk from background speakers. The recognition architecture
was otherwise the same as shown in Figure 1.

In addition to adapting the acoustic (Gaussian) models, we ex-
perimented with feature adaptation. This was accomplished by
performing three incremental MLP training iterations on the phone
alignments of the meeting data, using the CTS-trained MLPs as
initial parameter settings. By virtue of this initialization, and the
fact that the learning rate was kept small, the MLP would incor-
porate information from the new target domain (meetings) without
“forgetting” the original CTS training data.

Table 2 gives results for various combinations of acoustic
models and features, on the two most recent meeting recognition
evaluation testsets (RT-04S and RT-05S). The results support a
number of interesting observations. We will focus on the results
for RT-05S, as that is the larger and more recent testset:

� Adding CTS-trained MLP features, even without adapta-
tion, yields 5.9% relative win (lines c and d).

� Feature adaptation by itself is effective (compare lines a and
b), giving about 5.6% relative WER reduction. The gain is
about the same as that with Gaussian adaptation alone (lines
a and d).

� Gaussian adaptation and feature adaptation are partly addi-
tive. Jointly they yield about 8.4% relative WER reduction
(lines a and e).

� Comparing an adapted system without MLP features (line
c) and a full-adapted MLP system (line e), we find an 8.4%
improvement. This is slightly less, but broadly comparable
to the 9.9% relative gain obtained on in-domain (CTS) data.

4. CROSS-LANGUAGE EXPERIMENTS

We now address the question of how MLP features behave when
applied to other languages. We already had positive results for
Mandarin CTS, showing that a Mandarin-trained Tandem MLP
gives significant improvements [19]. Here, by contrast, we are
interested in how much English-trained MLPs help the acoustic
model for other languages. This seems questionable at first, since
each language has its own (sometime radically different) phoneset,
and the MLPs are trained for a phone discrimination task that is

Table 3. Results (CER) without and with MLP features on Man-
darin CTS testsets.

RT-04F devtest RT-04F eval
Features Fast Full Fast Full
Baseline 34.8 32.0 33.1 29.9
w/MLP features 33.5 31.4 31.6 29.0

language dependent. However, languages share phonetic distinc-
tions at the level of articulatory features (such as voicing, frication,
and nasality), and to the extent that these distinctions are shared
among languages,we can expect the MLP features (trained on any
language) to be a useful representation of the acoustic space.

4.1. Mandarin CTS Experiments

Experiments with Mandarin Chinese we based on our state-of-the-
art Mandarin CTS system as used for the NIST RT-04F evaluation
[20]. It is similar to the English system (Figure 1) in structure, with
minor deviations due to language differences and data availability.
For example, the front end omits voicing features, but does include
pitch-related features to better capture lexical tone. Most impor-
tant, the Mandarin phone set contains 65 phone types and encodes
lexical tone in the vowels, making it substantially different from
the 46-phone set of the English system. Only about 100 hours of
acoustic training data were available.

The original Mandarin CTS system included no MLP features.
As for English, we retrained the MFCC-based subsystems with
feature vectors augmented by Tandem/HATs MLP features. The
MLPs in were the same ones used for English. One complication
in doing so was that the English MLPs were gender dependent,
whereas the Mandarin models were gender independent, due to the
small amount of available training data. We simply ran the English
CTS gender identification on the Mandarin data, and applied the
gender-dependent English MLPs accordingly to each Mandarin
speaker. Since both male and female MLPs had been trained to
perform the same task (phone classification), we assumed that the
resulting features would be compatible across genders, as long as
the final dimensionality-reducing PCA transform was the same for
both genders. We arbitrarily picked the female PCA transform.

Table 3 summarizes the results, given in character error rates
(CER). Adding the MLP features consistently reduces error rates.
The reduction is 4.5% relative in the “fast” recognition setup, and
3.0% relative in the full system, measured on the RT-04F evalua-
tion set. The relative improvements are only about 50% to 30%
of what we found in the English CTS system, but that is not un-
expected given that the features were not trained for the Mandarin
task.

4.2. Levantine Arabic CTS

A similar cross-language retraining with English MLP features
was done with our RT-04F Levantine Arabic CTS recognition sys-
tems [21]. The system structure was again similar to the English
system. One difference is that the roles of PLP and MFCC models
are swapped, that is, PLP models are used for initial decoding and
lattice generation. Accordingly, we added the MLP features to the
PLP-based models, and left the MFCC-based models unchanged.
Another difference from English is that a nonstandard factor lan-
guage model is used in later stages of the system to better model
the complex morphology of Arabic [22]. Again, the acoustic mod-
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Table 4. Results (WER) without and with MLP features on Lev-
antine Arabic CTS testsets.

RT-04F devtest RT-04F eval
Features Fast Full Fast Full
Baseline 46.0 42.1 49.3 46.5
w/MLP features 43.9 40.0 46.7 44.5

els were trained with only a fraction of the amount of data that was
available for English: 70 hours. The lack of gender dependence in
the Arabic models was handled as described earlier for Mandarin.

Table 4 presents the results. We again see consistent word
error reductions with the addition of MLP features. The improve-
ments are between 4.3% and 5.3% relative, about half of what was
achieved in English CTS.

5. SUMMARY AND CONCLUSIONS

We have shown that Tandem/HATs MLP features trained on En-
glish CTS data can be ported effectively to other domains within
the language (meeting speech), and even to other languages (Man-
darin and Levantine Arabic). The unchanged feature MLPs, when
applied to these new domains, yield about 30% to 60% of the
relative improvement (reductions in error rate) as observed for
in-domain recognition. This is remarkable especially for cross-
language generalization, given the language-dependent, phoneset-
specific criterion used in MLP training. MLP feature porting thus
represents a novel technique for sharing acoustic training data be-
tween languages. This is important because many languages have
orders of magnitude less data available than for English.

When porting within the same language, we found that a sim-
ple incremental retraining approach was effective for boosting per-
formance of the MLP features in the new domain, yielding almost
the full benefit as observed in the CTS domain. A major ques-
tion for future research will be how to generalize the adaptation of
MLPs to new languages with mismatched phonesets.
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