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ABSTRACT

Discriminatively trained feature transforms such as MPE-HLDA,
fMPE and MMI-SPLICE have been shown to be effective in re-
ducing recognition errors in today’s state-of-the-art speech recog-
nition systems. This paper introduces the concept of Region De-
pendent Linear Transform (RDLT), which unifies the above three
types of feature transforms and provides a framework for the esti-
mation of piece-wise linear feature projections, based on the Min-
imum Phoneme Error (MPE) criterion. Recognition results on En-
glish conversational telephone speech data show that RDLT offers
consistent gains over the baseline systems, which are trained using
the LDA+MLLT projection.

1. INTRODUCTION

Discriminative feature optimization has been a research focus in the
last few years. Various works have been published, which share the
idea of training a feature transform under discriminative criteria such
as MPE and MMI. By using discriminative criteria, the feature opti-
mization is better correlated with the reduction of recognition errors,
hence offers better accuracy than standard feature transforms like
LDA+MLLT [1] or HLDA [2].

In MPE-HLDA [3, 4], a global linear projection is optimized,
selecting compact features from concatenated cepstral coefficients
across several frames (long span features). Being a linear projection,
it offers moderate gains over LDA+MLLT but is quite limited.

Feature space MPE (fMPE) [5, 6] is a nonlinear feature trans-
form also trained using the MPE criterion. A global Gaussian mix-
ture model (GMM) is trained, and the posterior vectors of those
Gaussians are projected into a lower dimensional space, in order to
correct some predefined features.

The idea of using Gaussian posteriors in fMPE to estimate off-
sets is not new. A similar algorithm called SPLICE [7] has been used
previously for noise compensation, however it is better formulated
as a piece-wise linear transform of the original features. A detailed
comparison between fMPE and SPLICE is given in [8].

In this work, we combine the idea of piece-wise transforms, as
in fMPE and SPLICE, together with the idea of using long span fea-
ture projections, as in MPE-HLDA, forming a kind of more general
transformation, which is referred to as region dependent transform
(RDT) in the rest of the paper. In RDT, either a linear or a nonlin-
ear feature transform can be used in each region. As a special case
of RDT, a linear projection of long span features is used for each
region. We refer to it as region dependent linear transform (RDLT).
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The paper is organized as follows. After the review of MPE-
HLDA and fMPE in Section 2, the concept of region dependent
transform is formed in Section 3. In Section 4, the implementa-
tion is introduced in terms of a feature transform network. Section 5
describes the experimental conditions. In Section 6, results are pre-
sented, showing the effect of using linear projections versus offsets,
and the effect of using different model size in the feature transform
estimation. The paper ends with conclusions and discussion of fu-
ture work.

2. MPE-HLDA AND FMPE REVIEWED

Both MPE-HLDA and fMPE aim at optimizing the objective func-
tion of MPE [9]. The feature transform in MPE-HLDA is a global
linear projection:

FMPE-HLDA(ot) = Aot (1)

where ot is long span feature obtained by concatenating several frames
of cepstral features from ct−k to ct+k, as showing below:

ot = [cT
t−k, ..., cT

t−1, c
T
t , cT

t+1, ..., c
T
t+k]T (2)

In fMPE, the feature transform is

FfMPE(xt) = xt + Mγt (3)

where M is a projection matrix, and γt is an N -dimensional vector
of Gaussian posterior probabilities, computed using a GMM trained
in the same space of xt. xt is some low dimensional feature vec-
tor that can be used to train HMM models directly. Typically xt is
formed by linearly projecting ot. In real fMPE system, posteriors
from left and right frames of current frame t are added to γt to make
the vector even longer, however, for simplicity, such detail is ignored
in our analysis.

Eq. (3) can be rewritten as

FfMPE(xt) =
N∑

i=1

γ
(i)
t (xt + M (i)) (4)

by expanding the matrix-vector multiplication. M (i) denotes the ith
column of M , and γ

(i)
t is the ith element of γt. For a fixed t, all the

γ
(i)
t ’s add up to 1.

Eq. (4) shows that fMPE can be viewed as weighted sum of
some feature vectors, each obtained by shifting xt by a constant
term. Since the posterior tells which Gaussian the frame is close to,
fMPE can be viewed as a region dependent feature correction func-
tion. Here the division of regions in the acoustic space is performed
by the GMM.
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3. REGION DEPENDENT TRANSFORM

It seems at a first glance that two very different functions are used
in MPE-HLDA and fMPE, however, if we write Eq. (1) in a similar
form as Eq. (4), we have

FMPE-HLDA(ot) =
1∑

i=1

γ
(1)
t (Aiot) (5)

where there is only one Gaussian, whose posterior γ
(1)
t is always 1.

From Eq. (4) and (5), it is natural to come up with a generalized
form of region dependent linear transform (RDLT) in which both lin-
ear projection Ai and bias bi are specific to region i (or equivalently
to Gaussian i).

FRDLT(ot) =

N∑

i=1

γ
(i)
t (Aiot + bi) (6)

An expression similar to Eq. (6) can also be found in MMI-
SPICE [10], however, in the latter the input feature ot is a low di-
mensional feature vector, and Ai is a square matrix. By this means,
MMI-SPLICE only applies linear transform of predefined features,
while RDLT tries to reselect useful information from longer context.

Conceptually, Eq. (6) can be further generalized by removing
the linear constraint, which leads to the general region dependent
transform (RDT) as

FRDT(ot) =

N∑

i=1

γ
(i)
t fi(ot) (7)

where fi is a vector-to-vector mapping function whose parameters
depend on region i. Other specializations of fi could lead to hierar-
chical transforms, or general nonlinear transforms. However, in this
paper we will only focus on the regionally linear transforms.

Since the linear projections Ai in Eq. (6) have a lot more pa-
rameters than bias vectors do, the total number of regions needed for
RDLT can be much smaller than in the original fMPE.

As variations of RDLT, one can think of using parameter tying
for Ai, since it is possible that fewer distinctive projections are really
needed than biases. The tying could be implemented by clustering
the Gaussians in the GMM into fewer groups, as we normally do
for fast Gaussian computation. Within each group, parameters of the
projections could be shared. The parameter tied RDLT (tRDLT) can
be expressed as

FtRDLT(ot) =
N∑

i=1

γ
(i)
t (Ar(i)ot + bi) (8)

where r(i) gives the group index of Gaussian i. In one extreme case,
if one group is used for all regions, it is equivalent to adding fMPE
and MPE-HLDA together.

4. FEATURE TRANSFORM NETWORK

The above analysis shows several variations of region dependent fea-
ture transforms. Besides them, context expansion and speaker de-
pendent transforms are usually used in training and decoding. In
order to handle the increasing complexity in feature extraction and
adaptation, the feature transform network was developed, which has
the following features:

• The network is a directed acyclic graph in topology, in which
vector-to-vector mapping functions are associated with edges
and vertices.

• Two types of functions are supported, temporal or non-temporal.
For example, context expansion is a temporal function since
it takes several frames of input to produce the output, while
linear projection is a non-temporal function.

• The framework provides services such as forward process-
ing, back-propagation of derivatives, memory optimization,
caching and integrity checking of the topology and intercon-
nections.

• Nested network is supported for easy combination of multiple
transforms.

• In addition, a configuration file is used to specify the network
topology and parameters of all feature transforms inside.

Having the feature transform framework simplifies research and
development on speech feature processing, as well as the acoustic
training in general.

5. EXPERIMENTAL SETUP

5.1. Training and testing corpora

We evaluated the performance of region dependent linear transforms
on the 2300-hour EARS RT04 CTS training corpus, consisting of
370 hours of Switchboard and Callhome data, plus 1930 hours of
Fisher data. Language Model (LM) training made use of 530M
words of web data released by the University of Washington (UW)
[11], 141M words from BN data, 47M words of archived text from
CNN and PBS, and 2M words from the TDT4 database. Testing was
performed on two sets: the RT03 evaluation set (Eval03), consist-
ing of 3 hours of Switchboard-II and 3 hours of Fisher data, and the
RT04 development set (Dev04), consisting of 3 hours of Fisher data.

5.2. Baseline System

The baseline system uses a Vocal Tract Length Normalized (VTLN)
PLP front-end, computing 14 cepstral coefficients and normalized
energy per frame of speech (25 msec window length, 10 msec frame
step). Mean and covariance normalization are applied to the cep-
stra on a conversation side basis, to reduce variability due to the
channel/speaker. The actual 60-dimensional features used in acous-
tic model training are produced by applying LDA+MLLT on sets of
15 contiguous cepstral frames (225 dimensions).

Recognition is carried out in three passes. The first pass is a
fast-match search performed in the forward direction, using a bi-
gram language model and a composite within-word triphone State
Tied Mixture (STM) HMM. The output of the forward pass consists
of the most likely word ends per frame along with their partial for-
ward likelihood scores. This set of choices is used in a subsequent
backward pass to restrict the search space, allowing for less expen-
sive decoding with more detailed acoustic and language models. The
backward pass is a time-synchronous beam search, employing an ap-
proximate trigram LM and within-word quinphone State Clustered
Tied Mixture (SCTM) HMMs. The output of the backward pass is a
word lattice, which is subsequently rescored in a third pass, using a
crossword quinphone SCTM model and an exact trigram LM.

The baseline crossword SCTM model is speaker and gender in-
dependent, consisting of approximately 223K tied states, sharing
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Gaussian parameters in 7K codebooks. The average number of Gaus-
sians within a codebook was varied to produce three model configu-
rations with 12, 44 and 120 components per codebook.

MPE training of the baseline models is carried out on unigram
lattices, generated on the 2300-hour corpus using the ML models. A
particular form of MPE training, in which the objective function is
smoothed with an MMI prior [12], was found to give optimal results.

5.3. RDLT training procedure

The storage efficient procedure of MPE-HLDA [4] was slightly mod-
ified to enable computing derivatives of MPE with respect to any
parameters in the feature transform network. Based on the chain
rule, the derivative of the MPE objective function with respect to the
transformed feature for each frame was computed first. Then it was
back-propagated through the feature transform network to get the
derivatives of parameters to be updated. The limited memory BFGS
[13] algorithm was used for the numerical optimization, typically
converging in about 10-14 iterations.

In all RDLT experiments, Gaussian posteriors were obtained us-
ing a GMM trained directly from the LDA+MLLT features via un-
supervised clustering. The MPE objective function was evaluated on
the same unigram lattices used in the baseline MPE training.

The performance of RDLT models was measured on the 9-hour
combined Eval03+Dev04 test set, by crossword rescoring of word
lattices generated by the baseline system.

6. RESULTS

6.1. Projections vs. Offsets

In order to show the effect of using linear projections versus offsets
in region dependent transforms, variations of RDLT are compared to
the LDA+MLLT projection in Table 1. For this purpose, only small
SCTM crossword HMMs were used, having 12 Gaussians per state
(12-GPS) on average.

For convenience, we use the notation RDLTM,N for the trans-
form that has M linear projections and N offsets. For instance,
RDLT1,0 is the MPE-HLDA transform, and RDLT0,N is the fMPE
transform without its context expansion.

Transform # proj. (M) # offset (N) WER (SI-ML)
LDA+MLLT N/A N/A 25.9
RDLT1,0 1 0 24.9
RDLT0,N 0 1000 24.6
RDLT1,N 1 1000 24.0
RDLTM,0 1000 0 22.3
RDLTM,N 1000 1000 22.3

Table 1. Variations of RDLT with different number of discrimina-
tively trained projections and offsets. Unadapted decoding results on
the Eval03+Dev04 test set.

RDLT1,N is equivalent to estimating a linear projection of the
joint feature set [oT

t γT
t ]T . In practice, the derivatives of the MPE ob-

jective function on the two parts can be very different in magnitude,
which could lead to bad convergence rate of the numerical optimiza-
tion algorithm. Scaling of the posteriors was used in our experiments
to overcome the problem. In one approach, we used a single scal-
ing factor on the posteriors, which was determined by examining the
magnitude of the derivatives. However, this required pre-computing
the derivatives. In another approach that did not need the derivative

pre-computation, we normalized the joint vector [oT
t γT

t ]T before
the optimization process, to have the same average variance in all
dimensions. Both approaches improved the convergence rate of the
L-BFGS algorithm.

For RDLTs that had multiple linear projections, we did not ob-
serve significant difference between using 0 or 1000 offsets in this
comparison. This is reasonable since the number of parameters in
1000 offsets is too small compared to that in the 1000 projections.

We also found that increasing the number of projections even
further may not offer significant gains. We have run another exper-
iment with 2500 projections, getting almost the same results as we
did with 1000 projections. On the other hand, increasing the num-
ber of offsets could possibly offer more gains, given that fMPE was
benefited from a large number of offsets.

It would be interesting to obtain more intermediate results in or-
der to find the optimal balance of projections and offsets, but we
were not able to investigate alternate configurations due to time con-
straints.

6.2. Results before and after MPE training of HMM

We estimated two sets of RDLT transforms, one using a small HMM
(12-GPS), and another using a medium-sized HMM (44-GPS). In
what follows, we refer to these transforms as 12-GPS RDLT and
44-GPS RDLT, respectively. Notice that in both cases, the RDLT
had 1000 projections and no offsets. After the feature optimization,
larger ML models were retrained using the optimized feature trans-
forms. Finally we ran 6-8 iterations of regular MPE training, on top
of these ML models, based on the same unigram lattices that were
used in the training of the RDLTs.

Tables 2 and 3 show the results before and after MPE training,
where the rows correspond to different feature transforms, and the
columns to different final model sizes. In these decoding experi-
ments, only an SCTM crossword HMM was used to rescore trigram
lattices generated from the backward pass of the baseline recognition
experiment.

Transform
ML Model WER(%)

12-GPS 44-GPS 120-GPS
LDA+MLLT 25.9 23.7 22.5
12-GPS RDLT 22.3 22.1 21.9
44-GPS RDLT - 21.6 20.8‡

Table 2. Unadapted Eval03+Dev04 decoding results of ML models
with different feature transforms.

The following two observations can be made from the ML re-
sults of Table 2:

• A 12-GPS HMM trained on the 12-GPS RDLT features pro-
vides a large gain (14% relative) compared to the 12-GPS
LDA+MLLT baseline. However, building larger HMMs in
the 12-GPS RDLT feature space results in only a small im-
provement in accuracy (0.4%), while the improvement from
increasing the HMM size in the LDA+MLLT feature space is
dramatic (3.4% absolute). As a result, the relative gain from
the 12-GPS RDLT shrinks down to 2.7%.

• When a 44-GPS model is used in the RDLT estimation, a con-
sistent relative gain of about 8% is obtained compared to the
LDA+MLLT baselines for both 44-GPS and 120-GPS final
model configurations.
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It appears that the performance of RDLT depends heavily on the
configuration of the HMM used during the optimization process. If
the resolution of this HMM is too low, the discriminative optimiza-
tion process will concentrate on fixing a lot of errors that do not
normally occur in a higher resolution HMM. The RDLT will still
provide features with better discriminative properties compared to
those of standard LDA+MLLT; but to maximize the gain from this
technique, the size of the RDLT HMM should be close to the size
of the final HMM used in recognition. A similar observation was
reported in [14], where the authors showed that fMPE trained with a
medium sized HMM performed better than one trained with a very
small HMM.

Transform
MPE Model WER(%)

12-GPS 44-GPS 120-GPS
LDA+MLLT 22.1 21.1 20.4
12-GPS RDLT 21.2 20.8 20.4
44-GPS RDLT - 20.3 19.6‡

Table 3. Unadapted Eval03+Dev04 decoding results of MPE models
with different feature transforms.

Similar observations can be drawn from the MPE results of Ta-
ble 3. In this case, using a larger HMM in the RDLT estimation is
critical in order to preserve the gain after retraining of larger models.
We can see that the 12-GPS RDLT features offer no improvement in
the 120-GPS final MPE HMM. However, using the 44-GPS RDLT
gives a 4% relative gain.

It is normal to see a reduced overall gain from the RDLT when
using MPE training of the final HMMs, since both the feature opti-
mization and final HMM Gaussian reestimation are done based on
the MPE criterion, operating on the same lattices. It would be in-
teresting to see whether there is an additional gain from regenerating
the lattices on the training data after the RDLT estimation, to be used
in the final MPE training.

Finally, it’s worth mentioning that we also reran the experiments
marked with “‡” in the tables by recreating decoding lattices using
within-word ML STM and SCTM models that were trained with the
44-GPS RDLT features. By using RDLT features in early stages of
the decoding, the WERs were further reduced to 20.4% for the ML
model and 19.2% for the MPE model, i.e., 9.3% and 5.8% relative
WER reductions compared to the ML and MPE baselines, respec-
tively.

7. CONCLUSIONS AND FUTURE RESEARCH

In this paper, we have introduced the concept of region dependent
transform by extending MPE-HLDA with the idea of dividing the
acoustic space into regions and having a feature transform for each
region. Then we discussed the relationship between RDT and other
feature extraction techniques, showing that both fMPE and MPE-
HLDA are special cases of the region dependent linear transform.
We also suggested that the number of projections and biases in this
transform could be optimized further by tying the parameters of the
projections.

2300 hours of English CTS data were used to train the HMM
and the feature transform. We have obtained 9.3% and 5.8% rela-
tive WER reductions to the ML and MPE baseline unadapted sys-
tems. Training issues especially the effect of HMM size have been
analyzed, and the results show that medium sized HMMs should be
preferred over small ones in the feature training.

Further research directions may include an investigation of pa-
rameter tying schemes, and the integration of RDLT with speaker
adaptation.
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