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ABSTRACT

We present a binaural solution to robust speech recognition in
multi-source reverberant environments. We employ the notion of
an ideal time-frequency binary mask, which selects the target if it is
stronger than the interference in a local time-frequency (T-F) unit.
Our system estimates this ideal binary mask at the output of a target
cancellation module implemented using adaptive filtering. This
mask is used in conjunction with a missing-data algorithm to
decode the target utterance. A systematic evaluation in terms of
automatic speech recognition (ASR) performance shows substantial
improvements over the baseline performance and better results over
related two-microphone approaches.

1. INTRODUCTION

A typical auditory environment contains multiple concurrent
sources that are also reflected by surfaces and may change their
locations constantly. While human listeners are able to segregate
and recognize a target signal under such adverse conditions, ASR
remains a challenging problem [1]. ASR systems are trained on
clean speech and face the problem of mismatch when tested in
noisy and reverberant conditions. In this paper we address the
problem of recognizing target speech from multi-source reverberant
binaural recordings.

Microphone array processing techniques which enhance the
target speech have been employed to improve the robustness of
ASR systems in noisy environments [2]. These techniques are
divided in two broad categories: beamforming and independent
component analysis (ICA) [3]. To separate multiple sound sources,
beamforming takes advantage of their different directions of arrival
while ICA relies on their statistical independence. A fixed
beamformer, such as that of the delay-and-sum, constructs a spatial
beam to enhance signals arriving from the target direction
independent of the interfering sources. A large number of
microphones are however required in order to impose a constant
beam shape across frequencies [3]. Adaptive beamforming
techniques, on the other hand, attempt to null out the interfering
sources in the mixture [4] [5]. While an adaptive beamformer with
two microphones is optimal for canceling a single directional
interference, additional microphones are required as the number of
noise sources increases. Similarly, the drawbacks of ICA

techniques include the requirement that the number of microphones
be greater than or equal to the number of sources and poor
performance in reverberant conditions [5]. Some recent sparse
representations attempt to relax the former assumption but the
performance is limited [6]. While the above techniques enhance
target speech independently of the recognizer, Seltzer et al.
optimize an adaptive filter based on recognition results [7].

Inspired by the robustness of the human auditory system,
research in computational auditory scene analysis (CASA) has been
devoted to build speech separation systems that incorporate known
principles of auditory perception [8]. In particular, binaural CASA
systems which utilize location information have shown very good
recognition results in anechoic conditions. Reverberation, however,
introduces potentially an infinite number of sources due to
reflections from hard surfaces. As a result, the estimation of
location cues in individual T-F units becomes unreliable and the
performance of location-based segregation systems degrades. A
notable exception is the binaural system proposed by Palomäki et
al. [9] which includes an inhibition mechanism that emphasizes the
onset portions of the signal and groups them according to common
location. The system shows improved speech recognition results
across a range of reverberation times with a single interference.

From an information processing perspective, the notion of an
ideal T-F binary mask has been proposed as the computational goal
of CASA [10]. Such a mask can be constructed from a priori
knowledge of target and interference; specifically a value of 1 in
the mask indicates that the target is stronger than the interference
within a particular T-F unit and 0 indicates otherwise. Previously,
we have proposed a binaural system that is capable of estimating
the ideal binary mask under multi-source reverberant conditions
[11] and reported results using a missing-data recognizer [12]
trained on reverberant speech. Note that the missing-data
recognizer treats the units labeled 1 in the mask as reliable data and
the others as unreliable during recognition. To avoid using a
different model for each reverberant condition, it is desirable to
train the ASR on anechoic data. However, we find that the
performance of the missing-data recognizer degrades considerably
when obtained using anechoic training.

In this paper, we propose an alternate approach using a speech
prior based spectrogram reconstruction technique [13]. In this
technique, the target speech values in the unreliable T-F units are
estimated by conditioning on the reliable ones. We observe that the
reliable units in the mask correspond to regions in the spectrogram
dominated by relatively clean target speech. Hence, the prior
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speech model used in the reconstruction can be also trained using
anechoic data. We show that the proposed system provides
substantial improvement in speech recognition accuracy over
baseline and other related two-microphone approaches.

The rest of the paper is organized as follows. The next section
gives the details of our proposed binaural system for robust
recognition. Section 3 gives evaluation results and comparisons
with related two-microphone approaches and the last section
concludes the paper.

2. MODEL DESCRIPTION

As described in the introduction, in the classical adaptive
beamforming approach the filter learns to identify the differential
acoustic transfer function of a particular noise source and thus
perfectly cancels only one directional noise source. Systems of this
type, however, are unable to cope well with multiple noise sources
or diffuse background noise. As an alternative, we have proposed
to use the adaptive filter only for target cancellation and then
process the noise reference obtained using a nonlinear scheme in
order to obtain an estimate of the ideal binary mask [11].
Specifically, we observe that the attenuation in a T-F unit due to
target cancellation is systematically correlated with the relative
strength between target and interference. Hence, the system
estimates the ideal binary mask by imposing a threshold on the
output-to-input energy ratio in each T-F unit [11]. In this work, we
use a T-F decomposition consisting of 10 ms time frames with 256
DFT coefficients. The target is assumed to be fixed and the filter in
the target cancellation module is trained in the absence of
interference. However, no restrictions are imposed on the number,
location, or content of the interfering sources.

Figure 1 demonstrates the performance of our segregation
system for a mixture of a target male utterance at 0� location and
four interfering speakers at -135�, -45�, 45�, 135�. The room
conditions are reverberation time T60=0.3 s and 5 dB input SNR.
Observe that the estimated mask is able to estimate well the ideal
binary mask especially in the target dominant high-energy T-F
regions and to entirely suppress the multi-source interference. This
highlights the capacity of our system to produce good segregation
results.

Although subjective listening tests have shown that the signal
reconstructed from the ideal binary mask is highly intelligible, the
extraction of cepstral features for input to ASR systems from a
signal reconstructed using such a mask is distorted due to the
mismatch arising from the T-F units labeled 0, which smears the
entire cepstrum via the cepstral transform [12]. One way to handle
this problem is by estimating the original target spectral values in
the T-F units labeled 0 using a prior speech model. This approach
has been suggested by Raj et al. in the context of additive noise
[13]. In this approach, a noisy log spectral energy vector Y at a
particular frame is partitioned in its reliable Yr and its unreliable Yu

components. The task is to reconstruct the underlying true spectral
energy vector X. Assuming that the reliable features Yr are
approximating well the true ones Xr, a Bayesian decision is then
employed to estimate the remaining Xu given only the reliable
component. Hence, this approach works seamlessly with the T-F
binary mask that our speech segregation system produces. Here, the
reliable features are the T-F units labeled 1 in the mask while the
unreliable features are the ones labeled 0. As seen in Fig. 1, the
reliable units in the mask are relatively clean at moderate levels of
reverberation. Hence, we train the prior speech model on anechoic

F
re

q
u

e
n

cy
(H

z)

0.0 2.0
0

8000

F
re

q
u

e
n

cy
(H

z)

0.0 2.0
0

8000

F
re

q
u

e
n

cy
(H

z)

0.0 2.0
0

8000

Time (sec)

F
re

q
u

e
n

cy
(H

z)

0.0 2.0
0

8000

(a)

(b)

(c)

(d)

Figure 1. Comparison between the estimated mask and the ideal
binary mask for a five-source configuration. (a) Reverberant target
speech. (b) Reverberant mixture. (c) The mixture spectrogram
overlaid by the estimated T-F binary mask. (d) The mixture
spectrogram overlaid by the ideal binary mask. The recordings
correspond to the left ear microphone.

data and thus avoid obtaining a prior for each deployment
condition which is desirable for robust speech recognition.

The speech prior is modeled as a mixture of Gaussians:
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Previous studies ([12], [13]) have shown that a good estimate
of Xu is its expected value conditioned on Xr:
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where p(k| Xr) is the a posteriori probability of the k’th Gaussian
given the reliable data and the integral provides the expected value
of the unreliable component Xu given the k’th mixture. Note that
under the additive noise condition, the unreliable parts may be
constrained as 0 u uX Y≤ ≤ [12]. In our implementation, we have

assumed that the prior can be modeled using a mixture of
Gaussians with diagonal covariance. Theoretically, this is a good
approximation if an adequate number of mixtures are used [12].
Additionally, our empirical evaluations have shown that for the
case of M=1024 this approximation results in an insignificant
degradation in recognition performance compared to a full-
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covariance Gaussian model while the computational cost is greatly
reduced. Hence, the expected value can now be computed as:
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The a posteriori probability of the k’th mixture given the
reliable data is estimated using the Bayesian rule from the
simplified marginal distribution , ,( | ) ( ; , )r r r k r kp X k N X µ σ=

obtained from ( | )p X k without utilizing any bounds on uX .

While this simplification results in a small decrease in accuracy, it
results in a substantially faster computation of the marginal. The
reconstructed signal using the above method is used as input in the
speech recognition experiments reported below.

3. RESULTS

We have evaluated our system on binaural stimuli, simulated using
the room acoustic model described in Palomäki et al. [9]. The
reflection paths of a particular sound source are obtained using the
image reverberation model for a small rectangular room
(6m×4m×3m). The resulting impulse response is convolved with
the measured head related impulse responses (HRIR) of a KEMAR
dummy head [14] in order to produce the two binaural inputs to
our system. The position of the listener was fixed asymmetrically at
(2.5m, 2.5m, 2m) to avoid obtaining near identical impulse
responses at the two microphones when the source is in the median
plane. For all our tests, target is fixed at 0� azimuth unless
otherwise specified. To test the robustness of the system we have
performed the following two tests: 1) an interference of rock music
at 45� (Scene 1); and 2) four concurrent speakers (two female and
two male utterances) at azimuth angles of -135�, -45�, 45� and
135� (Scene 2). The initial and the last speech pauses in the
interfering utterances have been deleted in Scene 2 to make it more
comparable with Scene 1. The signals are upsampled to the HRIR
sampling frequency of 44.1 kHz and convolved with the
corresponding left and right ear HRIRs to simulate the individual
sources. Finally, the reverberated signals at each ear are added and
then downsampled to 16 kHz which is the sampling frequency used
for filter adaptation in the segregation system. In all our
evaluations, the input SNR is calculated at the left ear using
reverberant target speech as signal.

The task domain is speaker independent recognition of
connected digits. Thirteen (the numbers 1-9, a silence, very short
pause between words, zero and oh) word-level models are trained
using an HMM toolkit, HTK [15]. All except the short pause
model have 8 emitting states. The short pause model has a single
emitting state, tied to the middle state of the silence model. The
output distribution in each state is modeled as a mixture of 10
Gaussians. The HMM architecture is the same as the one used in
Palomäki et al. [9]. The ASR and the prior used in our
reconstruction are trained on the 4235 clean signals from the male
speaker training dataset in the TIDigits database, downsampled to
16 kHz to be consistent with our model. Testing is performed on a
subset of the testing set containing 229 utterances from 3 speakers
which is similar to the test set used in [9]. The test signals are
convolved with the corresponding left and right ear target impulse
responses and noise is added as described above.

The feature vectors for recognition in each frame consist of
the 13 mel-frequency cepstral coefficients (MFCC) together with
their first and second order temporal derivatives. Additionally,
cepstral mean normalization (CMN) is applied to improve the
robustness of the system under reverberant conditions. Frames are
extracted using 25 ms windows with 15 ms overlap. The
recognition accuracy using clean test utterances is 99%. On
reverberated test utterances (T60 = 0.3 s), the accuracy is 94%.

Speech recognition results for the two-test conditions are
reported separately in Fig. 2 and Fig. 3 for T60=0.3 s at five SNR
levels: –5 dB, 0 dB, 5 dB, 10 dB and 20 dB. Results are obtained
using the same MFCC-based ASR as the back-end for the
following approaches: fixed beamforming, adaptive beamforming,
target cancellation through adaptive filtering followed by spectral
subtraction, our proposed front-end ASR using the estimated mask
and finally our proposed front-end ASR using the ideal binary
mask. The baseline results correspond to the unprocessed left ear
signal. Observe that our system achieves large improvements over
the baseline performance across all conditions. Additionally, the
excellent results reported for the ideal binary mask highlights the
potential performance that can be obtained using this approach. As
expected, the adaptive beamformer outperforms all the other
algorithms in the case of a single interference (Scene 1). However,
as the number of interferences increases, the performance of the
adaptive beamformer degrades rapidly and approaches the
performance of the fixed beamformer in the Scene 2 condition.
Since the first stage of our system produces a noise estimate,
alternatively we can combine our adaptive filtering stage with
spectral subtraction to enhance the reverberant target signal (see
also [16]). As illustrated by the recognition results in Fig. 3, this
approach outperforms the adaptive beamformer in the case of
multiple concurrent interferences. While spectral subtraction
improves the SNR gain in target-dominant T-F units, it does not
produce a good target signal estimate in noise-dominant regions.
Note that our front-end ASR employs a better estimation of the
spectrum in the unreliable T-F units and therefore results in large
improvements over the spectral subtraction method. A similar
pattern is observed when the reverberation time increases. Fig. 4
shows results for T60=0.6 s in the Scene 2 condition.

We compare our system with the binaural system proposed by
Palomäki et al. which was shown to produce significant recognition
improvements on the same digit recognition task as used here [9].
Table 1 compares the two systems for the case of one interfering
source of rock music. The recognition results for the Palomäki et
al. system are the ones reported by the authors while the results for
our system have been produced using the same configuration setup.
Listener is located in the middle of the room while target and
interfering sources are located at 20� and -20� respectively. T60 is
0.3 s and the input SNR is fixed before the binaural presentation of
the signals at three SNR levels: 0 dB, 10 dB and 20 dB. Note that
we obtain a marked improvement over the system of Palomäki et
al., in the low SNR conditions. By utilizing location information
only during acoustic onsets, the mask obtained by their system has
a limited number of reliable units. This limits the amount of
information available for recognition. This is probably the cause
for the degradation in system performance at low SNRs.

4. CONCLUSION

We have proposed a binaural-based system for robust speech
recognition in multi-source reverberant environments. In a
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Figure 2. Recognition performance for Scene 1 at T60=0.3 s and
different SNR values for the reverberant mixture (*), a fixed

beamformer (�), an adaptive beamformer (�), a system that

combines target cancellation and spectral subtraction (�), our front
end ASR using the estimated binary mask (�), and our front-end
ASR using the ideal binary mask (�).
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Figure 3. Recognition performance for Scene 2 at T60=0.3 s and
different SNR values. See Fig. 2 for notations.
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Figure 4. Recognition performance for Scene 2 at T60=0.6 s and
different SNR values. See Fig. 2 for notations.

systematic comparison, we have shown that the system yields
substantial performance gains over baseline and related
approaches. A key observation is that the segregation stage is able
to preserve the high-energy target dominant regions and therefore
our target reconstruction using an anechoic prior speech model
performs well. In addition, CMN performed on the reconstructed
target provides additional robustness to reverberation. The main
advantage for our system is that the prior and ASR models are
trained on clean speech and hence our algorithm is applicable for
recognition in changing reverberant environments.

Table 1. Comparison with the Palomäki et al. system in terms of
speech recognition accuracy (%)

Input SNR 0 dB 10 dB 20 dB

Baseline
(MFCC+CMN)

13.04 43.01 81.85

Palomäki et al. 32.7 78.8 91.9
Proposed system 47.58 81.59 91.80
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