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ABSTRACT

An effective mask estimation scheme for missing-feature
reconstruction is described that achieves robust speech recognition
in the presence of unknown noise. In previous work on Bayesian
classification for mask estimation, white noise and colored noise
were used for training mask estimators. This paper, which is
concerned with both the simulation of a more diverse set of
background environments and with mitigating the "sparse training"
problem, describes a new Bayesian mask-estimation procedure in
which each frequency band is trained independently. The new
method employs colored noise for training, which is obtained by
partitioning each frequency subband. We also propose a re-
evaluation method of voiced/unvoiced decisions to alleviate
performance degradation that is caused by errors in pitch detection.
Experimental results indicate that the proposed procedure in
conjunction with cluster-based missing-feature imputation
improves speech recognition accuracy on the Aurora 2.0 database
in the presence for all types of background noise considered.

1. INTRODUCTION
Acoustic differences between training environments and the
environment in which an actual speech recognition system must
work is one of the primary factors that degrades speech recognition
accuracy, and the presence of background noise is a major such
factor. While many signal-processing schemes have demonstrated
reasonable success in the presence of quasi-stationary noise, they
are still vulnerable to time-varying noise such as background music,
since most methods rely on an estimation of corrupting noise
components.

Missing-feature methods have been more effective in coping
with the effects of non-stationary noise conditions on speech
recognition accuracy (e.g. [1][2]). These methods depend mostly
on the characteristics of speech that are resistant to noise, rather
than on the characteristics of the noise itself. The missing-feature
method consists of two steps. The first step is the estimation of a
“mask” which determines which parts of a representation of noisy
input speech are considered to be unreliable. The second step is to
reconstruct the unreliable regions or bypass them for other
processing. In this paper we focus on the first step.

Seltzer et al. [3] have previously proposed a Bayesian classifier
for mask estimation, which was trained on speech corrupted by
white noise for the purpose of environment-independent mask
estimation. Nevertheless, we found in subsequent work that the
use of white noise for training the Bayesian classifier does not in
fact provide the desired environment independence in mask

estimation. This motivated a training method that employs a
combination of colored noises that has been described previously
[4].

Our previous work had involved training the speech recognizer
in the presence of background noise with different spectral
characteristics in different frequency bands, but the multiple
frequency bands led to difficulty in obtaining coverage of the
possible environments with limited training data. In the algorithm
described in this paper we avoid this problem through the use of a
mask-estimation algorithm in which each frequency band is
independent. We also propose a new method for generating
colored noise to train the mask estimator, as well as a re-evaluation
method of voiced/unvoiced decisions that mitigates the adverse
effects introduced by errors in pitch detection.

This paper is organized as follows. We first review the
missing-feature method in Section 2. We discuss the shortcomings
of previous techniques and then describe the proposed algorithms
in Sections 3 and Section 4. Representative experimental
procedures and their results are presented and discussed in Section
5. Finally, in Section 6, we offer some conclusions about our work.

2. MISSING-FEATURE METHOD
2.1. Mask estimation
In the missing-feature approach, it is necessary to determine a
“mask” which classifies the spectrum of incoming speech into
reliable and unreliable (“missing”) regions for missing-feature
reconstruction. Reliable regions are defined as the spectro-
temporal fragments for which the incoming speech appears to be
dominant over the corrupting noise. In unreliable regions, the
speech components are assumed to be distorted by the background
noise. The reliable regions are assumed to be helpful to speech
recognition, while the unreliable regions degrade the performance
of recognition. Seltzer et al. [3] proposed a Bayesian classifier for
mask estimation which makes no assumption about the corrupting
background noise.

2.2. Missing-feature reconstruction
Many methods have been proposed for reconstructing missing
features, including the cluster-based and correlation-based methods
of Raj et al. [2]. Based on (maximum a posteriori probability
(MAP) estimation techniques, they restore unreliable parts of
speech spectrogram using both a priori characterizations of clean
speech and the values of speech features in the reliable regions as
indicated by the estimated masks. We employed the cluster-based
reconstruction method [2] for our work.
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The distributions of the log spectra of clean speech are
modeled by Gaussian mixture densities with K clusters. A noisy
speech vector S(t) is considered to have reliable components S0(t)
and missing components Sm(t). We can determine the cluster
membership k of S(t) by its a posteriori probability. If S(t) has
unreliable elements, their probability could be calculated by
integrating them out:
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where Ym(t) indicates the observed values of the unreliable parts.
Finally, the unreliable parts Sm(t) are restored using bounded MAP
estimation based on the observations in the reliable regions S0(t),
the Gaussian model of the cluster determined by (1), and the upper
bound of Ym(t).
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3. BAND-INDEPENDENT MASK ESTIMATION
3.1. Background and motivation
In our previous work we simulated various kinds of background
noise by increasing the number of partitions N of the frequency
band [4]. Theoretically, all kinds of noise observed in nature could
be characterized by increasing N to half of size of the discrete
Fourier transform (DFT) and training under a variety of SNRs.
Unfortunately, the frequency of occurrence of each colored noise
decreases as the number of kinds of noise increases when the
amount of training data is limited. We believe that this is reflected
in the failure to observe continued reductions in error rate as the
number of partitions N increased beyond a point.

In this paper we propose a new approach to cope with the
problem of limited data caused by increasing the number of
frequency partitions. In our previous work the features of the mask
classifier in a particular frequency band were affected by adjacent
frequency bands, and the resulting data-insufficiency problem was
exacerbated as we attempted to model an increased number of
types of background noise. For these reasons we developed a new
Bayesian classifier in which independent processing is performed
in each frequency band. With this “band-independent” classifier,
we only need to apply the various kinds of spectral events to a
particular frequency band in order to simulate the various types of
background noise considered. Therefore, we expect that the
proposed method would enables us to characterize the spectral
patterns of a number of different background environments while
using a relatively small number of combinations of colored noise.

3.2. Design of the mask estimators
3.2.1. Subband cepstral coefficients
Cepstral coefficients, which provide an efficient characterization of
the short-time spectral envelope, are used as features for the mask
estimators, just as they are for the speech recognition system itself.
Nevertheless, in our mask estimators, cepstral coefficients are
derived separately for each of the spectral regions spanned by each
Mel-filter channel. In other words, we obtain “subband cepstral
coefficients” by taking the logarithm of the spectrum of the signal
emerging from each Melfilter channel, applying the discrete cosine

transform (DCT), retaining the upper Nth coefficients. In our
experiments, a fifth-order subband cepstrum was calculated for
every Mel-filter channel, along with its first derivative.

3.2.2. Spectral flatness measure (SFM)
The SFM indicates which tonal component (if any) is dominant in
a given signal frame, and it has usually been used as a measure for
determining which segments of an utterance are voiced or
unvoiced [5]. The SFM can be calculated using the ratio of the
geometric and arithmetic averages of the spectrum as in (3):
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The SFM is expected to represent the amount of contamination by
the background noise and it is computed from the log spectrum
selected by each Mel-filter channel in this paper.

Together with the subband cepstrum and SFM features, the
Comb Filter Ratio (CFR) feature used in our previous work is also
used as one of features in the voiced speech regions for the
proposed mask estimator, which is based on Bayesian
classification as in our previous work. The acoustic models of the
estimator use a 12th-order feature vector for voiced speech and an
11th-order vector for unvoiced. Both feature vectors are trained
using a new type of colored noise to be described in the next
section. The mask estimators in each frequency band work
independently.

3.3. Partitioned band-by-band training
In this section we describe a modified method for generating
colored noise for training the band-independent mask estimator. In
this proposed scheme, each Mel frequency sub-band is partitioned
into N parts instead of partitioning the entire frequency band. We
refer to this approach as the “intra-band partition method” for
generating colored noise.

In the intra-band partition method for colored noise, a
particular subband is partitioned into N parts. N types of colored
noise are generated from each subband, each of which has energy
only in a narrow-band corresponding to each partition. To
generate each narrow-band colored noise, a method that is similar
to spectral subtraction is employed, rather than the bandpass
filtering used in [4]. Specifically, components of white noise are
removed outside the frequency region of interest, and a resulting
narrow-band colored noise is obtained in the time domain through
inverse Fourier transformation.

This produces N types of colored noise which each have a
narrow frequency range in a particular subband. We then generate
2N types of colored noise to train the mask estimator by combining
the N narrow-band colored noise that are obtained. The
combination is selected randomly for each time frame (typically 30,
60, or 300 ms) for time-varying noise samples and the same
combination is used over the entire duration if stationary noise
samples are desired. A noise-corrupted speech database for
training the band-independent mask estimator is produced by
adding the colored noise obtained as described above to a clean
speech database at various SNRs. In our work, 20, 15, 10, 5, and 0
dB are used.

Figure 1 compares the proposed method to the method used in
our previous work for generating colored noise. As the figure
shows, the entire frequency band is partitioned into four parts in
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Fig. 1. Comparison of the methods used for generating colored noise.
(a) entire frequency band partition method, (b) intra-band partition method.

Fig 2. Spectrograms of colored noise generated as described in this paper:
(a) stationary case, (b) non-stationary case.

the previous scheme while each Mel-filter band is split into four
regions in the proposed method. We can obtain 2N combinations
of colored noise in both of methods. However, the proposed
scheme has the effect of partitioning the entire frequency band into
4 times the number of Mel-filter banks M, or 24M combinations,
since the mask estimator corresponding to each subband is trained
independently. This means that we can simulate a greater number
of spectral patterns with a relatively small number of combinations.
Figure 2 shows examples of colored noise generated by the
proposed method, in which each subband is split into four parts.

4. RE-EVALUATOIN OF VOICED DECISIONS
In our previous work, we proposed a restoration method of voiced
frames in cases in which the misclassification of voiced frames led
to errors in mask estimation [4]. In the present work we perform a
similar type of re-evaluation method, but for frames that are
classified unvoiced as well as voiced.

The proposed method is based on a simple classifier using
Gaussian mixture models (GMMs) with general MFCCs as the
feature vectors. GMMs for voiced speech, unvoiced speech, and
silence were trained using the noise-corrupted speech database as
described above. The training database was made by adding the
colored noise to the clean speech database, which was generated by
partitioning the entire spectrum as in Fig. 1a. Figure 3 presents a
diagram of the entire re-evaluation method employed in this work
and especially the left dashed-line box shows the procedure of
unvoiced frame restoration scheme proposed in this paper. We
found that it was more effective in reducing insertion errors to
consider the frames which are re-evaluated as silence to be
unreliable in mask estimation.

Fig. 3. Diagram of the re-evaluation method for voiced/unvoiced decisions.

5. EXPERIMENTAL RESULTS
We evaluated the proposed methods following the procedures
specified by the Aurora 2.0 evaluation [6]. HMMs were trained
for speech recognition (using the HTK package) and GMMs were
trained for cluster-based missing-feature reconstruction using a
training database that contained 8,440 utterances of clean speech.
The multi-condition testing database was generated by combining
clean speech from Set A in Aurora 2.0 with four types of noise
samples: white noise, car noise, speech babble, and background
music. The white noise and speech babble were obtained from
NOISEX92 and the car noise was from Aurora 2.0. Background
music was obtained from the prelude parts of ten Korean pop
songs which have various types of intensity and speed. Speech and
noise were combined with five SNRs; 20, 15, 10, 5, and 0 dB.
Each of these 20 noise conditions is represented by 1,001 samples.

The performance of a baseline system was first evaluated at 5-
dB SNR, and these results are shown in Figure 4. In this figure
results obtained using the method described in this paper are
compared to spectral subtraction (SS), cluster-based missing-
feature restoration using masks derived from Oracle knowledge
(missingO), and a combination of the latter two methods. These
test conditions were used for all remaining experiments in this
paper.

Figure 5 presents the recognition accuracy obtained using the
band-independent mask estimation that is described in this paper.
These results were obtained by using the mask estimation
described above in conjunction with cluster-based missing-feature
reconstruction [2]. The “Ex-multi” condition indicates multi-style
training while excluding the testing condition. The curves show
the dependence of recognition accuracy on the number of
partitions used in each band while training the mask estimator.
While there is some variability, greatest accuracy is obtained for 2
to 4 bands per channel. The fact that accuracy is comparable to or
better than that obtained using “ex-multi” training confirms that
the proposed method is effective for training in unknown
background noise.

Figure 6 compares the recognition accuracy obtained using
mask estimators trained using the intra-band partition method
described in this paper to that obtained with mask estimators that
had been trained by partitioning the entire spectrum as in [4]. The
complete Aurora 2.0 testing database was used in obtaining these
data. Four bands per Mel channel were used in the current
implementation while 12 bands were used in partitioning the entire
spectrum; both of these numbers provided best results in pilot data.
It is seen that except for the case of speech babble, training the
mask estimator using intra-band partitioning provides better
recognition accuracy than training the estimator by portioning the
entire spectrum. Improvement is especially evident at low SNRs
with white noise and car noise and over all SNRs for background
music. The significant improvement in background music, which
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Fig. 4. Word accuracy of the baseline system at 5 dB SNR.
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Fig. 5. Dependence of word accuracy using the proposed method on the
number of partitions within each Mel frequency channel.

is especially problematic for recognition, provides additional
validation for the approaches described. We believe that these
approaches are successful in part because the mask estimator can
be more completely trained with a small number of examples.

Figure 7 compares the recognition accuracy obtained with and
without re-evaluation of the voiced/unvoiced decisions. It can be
seen that the use of re-evaluation improved recognition accuracy
for all background noises and all SNRs except for car noise at
lower SNRs, and re-evaluation provided clear benefit in the case of
the speech babble condition, which did not improve through the
use of the new type mask estimation alone. Re-evaluation was
effective especially because it reduced the number of insertion
errors in speech recognition.

We also note that the proposed method usually outperforms the
Vector Taylor Series (VTS) algorithm, which is known for its good
performance in quasi-stationary noise [7]. Although the approach
described in this paper produces slightly worse accuracy than VTS
in white noise or car noise at high SNRs, it is better than VTS at
lower SNRs. We believe that the accuracy of the present algorithm
at high SNRs is adversely affected by insertion errors in
recognition that are caused by errors in pitch-detection.

6. CONCLUSIONS
In this paper, we have described an effective method of mask
estimation for missing-feature algorithms that obtains robust
performance of speech recognition under unknown noise
environments. We describe a new way of training a Bayesian
classifier for mask estimation using colored noise that is generated
by partitioning each Mel subband. A re-evaluation method for
reducing the performance degradation due to incorrect
voiced/unvoiced decisions was also proposed. Experimental
results demonstrate that the proposed mask estimation scheme is
effective in improving speech recognition accuracy under various
kinds of unknown noise environments.
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