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ABSTRACT 

We present a novel approach to handling dynamic (time 
derivative or delta) features for automatic speech recogni-
tion using a HMM/GMM-architecture and based on 
missing data techniques for noise robustness. The static and 
the dynamic features are imputed in the observations based 
on an acoustic model expressed in a domain that is a linear 
transform of the log-spectra and taking bounds into 
account. The reliability masks of the dynamic features are 
ternary. We describe a method for computing oracle masks 
for dynamic features. We also propose a simple method to 
derive dynamic masks from the reliability mask of the static 
features. We find that using bounds in the imputation is 
advantageous, both for oracle masks and for masks derived 
from the noisy observations. 

1. INTRODUCTION 

Missing data techniques (MDT) can be applied to alleviate 
the lack of robustness of speech recognizers to noise. In this 
approach, spectrographic areas of a noise-contaminated 
speech signal are considered as unreliable if they are domi-
nated by noise and reliable if the speech signal dominates 
over the noise signal. The data structure representing this 
reliability information is called a mask and is expressed 
with the same time and frequency resolution as the 
spectrogram. Reliable information is used as such when 
speech hypotheses are evaluated, but unreliable spectro-
graphic information is either marginalized out or is recon-
structed and imputed in the speech spectrum. The mathe-
matical formulation of marginalization and imputation is 
relatively simple [1] when the speech model is expressed as 
a HMM with Gaussian mixtures with diagonal covariance 
matrices in the spectral domain (or any non-linear com-
pression thereof). Every unreliable spectral component can 
then be marginalized out or can be reconstructed indepen-
dently of observations and models at other frequencies or 
other times. In [2], we presented an imputation approach 
using HMMs with Gaussian mixtures using diagonal cova-
riance matrices in a domain that is a linear transformation 
of the (log-)spectra. An example of such a representation 

would be the familiar cepstral coefficients, which we will 
use in the sequel to develop the ideas. Because the reliabi-
lity mask is expressed in the spectral domain, but the model 
is expressed in the cepstral domain, the reconstruction of 
the missing spectrographic information cannot be solved 
per frequency bin as before, but requires the solution of a 
constrained minimization problem involving the data at all 
frequencies [2]. Because log-spectra and cepstra are related 
by a linear transform, the problem remains tractable, 
though significantly more computational effort is involved 
when compared to a plain vanilla HMM system.  

When derivative (dynamic or delta) features are used, 
the formulation becomes more complex. In addition to a 
linear transform that mixes over frequency, a linear 
transform that mixes over time is also introduced. Indeed, 
the derivatives are computed using a finite impulse respon-
se (FIR) filter involving a window of 2L+1 successive filter 
bank output values. In [2], all unreliable spectrographic 
data were reconstructed over this analysis window by 
likelihood maximization using model involving static and 
dynamic features. This approach can be criticized for its 
complexity as well as for its estimation of the missing data 
based on a model that may be weak for frames with small 
coefficients of the FIR filters, since they affect the 
likelihood only marginally. This ill-conditioning could be 
removed by exploiting the full covariance of the spectral 
features at different times and frequencies as developed in 
[3]. In the present work however, a different approach to 
the MDT-based imputation is proposed. Instead of recon-
structing all static features in a window of length 2L+1, the 
dynamic features of the central frame are imputed directly. 
This requires a mask for the delta features. In [5] and [6]
so-called strict masks are used, i.e. the delta feature is 
unreliable if any of its contributing static values is unreli-
able. However, we could not show accuracy improvements 
with strict masks over a baseline in which the deltas were 
simply uncompensated. 

This paper is organized as follows. In section 2, the 
basics of missing data based ASR with HMMs are revised. 
Section 3 describes how dynamic features can be handled in 
a missing data setting while the speech representation of 
our choice will be specified in section 4. Section 5 
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addresses the problem of generating reliability masks for 
the dynamic features. In section 6 we show that the propo-
sed approach is successful on a small-vocabulary recogni-
tion task. 

2. MISSING DATA TECHNIQUES FOR ASR 

Let st, nt and yt denote the vector of D filter bank outputs at 
time (signal analysis frame number) t for the clean speech, 
the noise and the noisy signal respectively. For ease of 
notation, we will assume throughout this paper that st, nt

and yt are log-powers, though other compression functions 
can be used. Because the noise is additive, the inequality

t t≤s y  (1) 

holds. The reliable components of st are approximated by 
their counterparts in yt. In the Gaussian-based imputation 
approach, the unreliable components of st are estimated as 
those values that maximize the likelihood of the Gaussian 
subject to the constraint (1). Hence, for a Gaussian charac-
terized by a mean vector µ�  and a precision matrix    P

�

 in 
the (log-)spectral domain, we need to minimize: 

( ) ( ) ( )1 1
log

2 2t tµ µ′− − −s P s P
� �

� �  (2) 

with respect to the unreliable components of st and subject 
to (1). In our approach, P

�

    is a matrix of full rank contain-
ing some structure (see section 4). In case the Gaussians are 
estimated in the cepstral domain with mean µµµµ and covari-
ance ΣΣΣΣ, µ µ′= C�  and −′= Σ 1P C C

�

 where C is the orthonor-
mal DCT matrix. By substitution of x = yt- st, this minimi-
zation is cast as a non-negative least squares (NNLSQ) 
problem with at most D unknown [2], i.e. the minimization 
of a quadratic subject to a positivity constraint. We have 
shown previously that in practice, a few gradient descent 
iterations suffice to find the solution, leading to a high but 
often feasible computational complexity. The minimizer of 
(2) is then imputed in the observation vector to replace the 
unreliable spectral components.  

In practice, C is often chosen to be non-square, i.e. the 
number of cepstral coefficients is less than the number D of 
filters in the filter bank. To have a unique solution of the 
NNLSQ problem, P

�

needs to be of full rank, which can be 
achieved by regularizing the problem, e.g. by adding a posi-
tive definite diagonal matrix to it. 

3. DYNAMIC FEATURES 

In the previous section, we described an imputation method 
for the static spectra. It is, however, very common to 
augment the feature vector with its first and second order 
derivatives. In an earlier approach [2], we coped with these 
delta features in an MDT setting by considering the 
window of 2L+1 frames of static features that contribute to 

the deltas and imputing the missing data over this window. 
If bstatic, bvel and bacc denote the vectors of 2L+1 coefficients 
used to compute the static and dynamic features (bstatic will 
be all-zeros except for a 1 in the L+1-th position), ⊗ is the 
Kronecker product, we can write the augmented cepstral 
feature vector as  

[ ]
static

vel t L t t L

acc

− +

⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥ ′′ ′ ′= ⊗⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

b

y b C y y y

b

� … …  (3) 

For every t, all unreliable components of [ ]t L t t L− +
′′ ′ ′y y y… …

can be estimated based on the Gaussian model of y�  and the 
inequalities (1). The resulting non-negative least squares 
problem has up to (2L+1)D unknown, which makes the 
high computational load of the approach hard to justify 
given the modest performance gain relative to using 
uncompensated deltas. Worse, the estimation of the missing 
data is an ill-posed problem for those spectral values that 
contribute little to the deltas.  

In the present approach, we define a reliability mask for 
the delta features themselves and impute the derivative fea-
tures directly and separately for each feature stream. The 
resulting problems are well-posed and require significantly 
less computational effort, but require reliability masks to be 
made for the deltas (see section 5). Moreover, the mathe-
matical formulation of section 2 needs to be extended. 

When static spectral features are unreliable due to noise 
corruption, this means that the clean value deviates from 
the noisy observation. With static spectra, the latter is 
always greater than the former (equation (1)). Similarly, we 
can define unreliable dynamic spectra as those that deviate 
from their noisy observations. However, noise corruption 
can now result in an observation that is either larger or 
smaller than the clean value. Hence, a reliability detector 
for dynamic features will need to generate a ternary output 
(∂ denotes either the velocity or acceleration operator) 

 1 means unreliable and t t∂ ≤ ∂s y

 0 means reliable hence t t∂ = ∂s y  (4) 

-1 means unreliable and t t∂ ≥ ∂s y

Since we are using Gaussian mixtures to model the HMM 
state emission probabilities, the maximum likelihood esti-
mate for the dynamic features is found by minimizing a 
cost function of the form (2), but now subject to constraints 
(4). Like for the static features, this problem can be cast as 
a non-negative least squares problem with at most D
unknown. 

4. PROSPECT FEATURES AND MDT 

In order to reduce the computational load for solving the 
NNLSQ problems, we abandon the cepstral representation 
of speech. We replace the DCT matrix C by another linear 
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transform D that has the property of decorrelating the 
spectral features [7]. Hence, the PROSPECT features are 
defined as pt = D st with 

K

D K K

⎡ ⎤
= ⎢ ⎥′−⎢ ⎥⎣ ⎦

C
D

I C C
 (5) 

where CK is a DCT matrix with K orthonormal rows 
rendering only the first few cepstral coefficients (K = 3 in 
this paper) and ID is a D-by-D identity matrix. Like cepstra, 
PROSPECT features can be modeled using a GMM with 
diagonal covariances [7]. Moreover, this choice makes P

�

of 
full rank and makes computation of the gradient of (2) 
more efficient.  

In previous work, we have applied PROSPECT models 
to the static features only. The decorrelation properties of 
the PROSPECT representation hold equally well for the 
dynamic features, hence C in (3) is replaced by D defined 
in (5). The means and covariances in a PROSPECT model 
can be estimated using the EM algorithm. 

5. MASK ESTIMATION FOR DYNAMIC 
FEATURES 

In the previous sections, we have learned how the missing 
data can be imputed based on a model and a mask. In this 
work, we will consider 3 types of masks: 
• Oracle masks that are derived from the knowledge of the 

clean speech and the noise. For the static features, the 
masks are obtained by comparing the log-spectra of clean 
speech and noise:  

( ), 0 /1static t t t staticα= ≤ −m s n  (6) 

where ( )0/1 equals 1 (0) when the logical expression 
inside the brackets holds (does not hold) and αmask is a 
constant. When the cross products of speech and noise 
are neglected in the Fourier transform of the noisy 
speech, (6) can be shown to be equivalent to 

( ), 0 /1static t t t staticδ= ≤ −m s y  (7) 

with ( )log 1 static

static eαδ = + . The mask of the dynamic featu-

res is defined as: 
( ) ( ), 0 / 1 0 /1vel t t t vel t t velδ δ= ∆ ≤ ∆ − − ∆ ≥ ∆ +m s y s y  (8) 

( ) ( ), 0 /1 0 /1acc t t t acc t t accδ δ= ∆∆ ≤ ∆∆ − − ∆∆ ≥ ∆∆ +m s y s y  (9) 

Hence, the noisy dynamic spectral features are considered 
reliable if they deviate less than δ from the clean speech 
values. 

• Derived oracle masks that are constructed by applying 
the delta operator of the oracle mask for the static 
features. Now we set: 

( ), , , ,vel t static t L static t static t L velsign − + ′⎡ ⎤= ⎣ ⎦m m m m b… …  (10) 

( ), , , ,acc t static t L static t static t L accsign − + ′⎡ ⎤= ⎣ ⎦m m m m b… …  (11) 

where sign(x) is 1, 0 or –1 if x is positive, zero or 

negative. This choice is motivated as follows. The deriva-
tive spectra are a linear combination of the static spectra. 
The static masks flag the fact that the noisy contribution 
to this linear combination is less than the clean value. 
With positive (negative) b-weights, the noisy derivative 
will be less (greater) than the clean value. Hence, we can 
consider (10) and (11) as a weighted voting mechanism. 
The static features are considered reliable when there are 
equal votes for over and underestimation due to the noise 
corruption. This happens in particular when all features 
are reliable, but also when all spectral features are 
unreliable. 

• Derived real masks that are constructed for the dynamic 
features by applying the delta operator of a real mask for 
the static features. Now mstatic,t is estimated from the 
noisy data using harmonicity and SNR information [4]. 
The dynamic masks are constructed with (10) and (11).

6. EXPERIMENTS 

The above approach is evaluated on the AURORA-2 
continuous digit recognition task. Since channel mismatch 
is beyond the scope of this paper and no prior knowledge 
about the noise is exploited, we limit the evaluation to test 
set A. The recognizer is configured with 16 HMM states 
per digit and 20 Gaussians per state. The optional inter-
word silence is modeled by 1 or 3 states with 36 Gaussians 
per state, while leading and trailing silence have 3 states. 
The total number of Gaussians is 3628. The front-end of 
the MDT system is the ETSI STQ WI-007 standard, using 
23-channel MEL-spaced filter bank and no (cepstral) mean 
normalization. The filter bank outputs are transformed to 
PROSPECT features with K = 3. Velocity and acceleration 
features are computed using the HTK default regression 
formulae. First, a reference model was trained using the 
standard AURORA training script and using WI-007 
MFCCs with their first and second order deltas. The Gaus-
sian means and diagonal covariances in the PROSPECT 
domain are obtained by “single-pass retraining”, i.e. forced 
alignment using noise-free cepstral features while the accu-
mulants of the EM training are computed for the noise-free 
PROSPECT features.  

The mean accuracy over the four noise types of test set A 
is presented in figure 1. Curve (a) shows the baseline with-
out noise compensation and using the PROSPECT transfor-
mation on static and dynamic features. On clean data, the 
error rate is 0.4%, which is even better than the cepstral 
model’s performance. Hence static as well as dynamic fea-
tures are well-modeled with Gaussians with a diagonal 
covariance in the PROSPECT domain. Curve (b) shows the 
accuracy when the oracle masks (6) with αstatic=3dB are 
used for imputation of the static features while the dynamic 
features are uncompensated. When compared to the results 
in [7] which used the PROSPECT transform only on the 
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static features and cepstra on the dynamic features, we see 
almost equal performance, which extends our previous 
conclusion to low SNR. 

Next, we try to handle the delta features with missing 
data techniques. By imputing the dynamic features using 
oracle masks (8) and (9) with δvel=2dB and δacc=0.5dB and 
bounds (4), a superior accuracy is obtained (curve c). This 
performance degrades only slightly when the derived masks 
(10) and (11) are used instead (curve d) and is definitely 
better than no compensation for the deltas (curve b). Strict 
masks (see section 1) in conjunction with imputation 
without bounds resulted in practically equal performance as 
curve (b). Though results with uncompensated deltas were 
not reported in [5], they found small differences with 
exploiting bounds on deltas, while we find a significant 
improvement. We attribute this contradiction to differences 
in acoustic models, domain and MDT method (marginali-
zation versus imputation). 

In a last series of experiments, we replace the static 
oracle mask by one computed from the noisy data as descri-
bed in [4]. When the delta features are left uncompensated, 
we obtain curve (e). Using strict masks with imputation 
without bounds we obtained worse results than this 
reference (e.g. 3 % absolute at SNR of 10dB). The 
difference with oracle masks is that these real strict masks 
become sparse so the delta features are almost always ig-
nored. By using derived real masks (which are less sparse) 
and exploiting the bounds, we obtain the curve (f), showing 
an improvement attaining the performance reported in [4], 
but now in the absence of additional noise reduction 

methods. Unlike the conclusion from [5], we find that 
bounds for the deltas do help on real masks. 

7. DISCUSSION AND CONCLUSIONS 

We have proposed a data imputation method for handling 
the streams of dynamic features in speech recognizers based 
on missing data techniques, where the observations are 
used as upper or lower bounds as indicated by the reliability 
mask. The missing data were imputed in the static as well 
as in the dynamic features based on a HMM for speech 
using Gaussian mixture emission models. In our missing 
data approach, these Gaussians are not constrained to be 
diagonal in the spectral domain, but are diagonal in any 
linear transform of the spectral domain. For reasons of 
computational efficiency, we opted for the PROSPECT 
transform, which was shown to be a valid replacement of 
the cepstral transform. We extended the application of this 
PROSPECT transformation to the delta features and 
showed experimentally that this leads to comparable 
performance. Then we showed the validity of the 
imputation method of the deltas based on oracle reliability 
masks and proposed a simple method to compute a 
reliability mask for the dynamic features from a static 
mask. We find that bounded imputation of dynamic features 
improves accuracy for both oracle and real masks.  
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Figure 1: recognition accuracy using the PROSPECT
model for static, velocity and acceleration features and (a)
no noise compensation (b) MDT with oracle masks on the
statics only (c) oracle masks and MDT on all features (d)
derived oracle masks and MDT on all features (e) MDT
with real masks on the statics only (f) MDT with derived
real masks.
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