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ABSTRACT

We describe a novel approach to feature combination

within the missing data (MD) framework for automatic

speech recognition, and show its application to reverberated

speech. Likelihoods from a spectral MD classifier are com-

bined with those from a full cepstral feature vector-based

recogniser. Even though the performance of the cepstral

recogniser is substantially below that of the MD recogniser,

the combined recogniser performs better in all conditions.

We also describe improvements to the generation of time-

frequency masks for the MD recogniser. Our system is com-

pared with a previous approach based on a hybrid MLP-HMM

recogniser with MSG and PLP feature vectors. The proposed

system has a substantial performance advantage in the most

reverberated conditions.

1. INTRODUCTION

Room reverberation remains a significant challenge for ro-

bust automatic speech recognition (ASR) in real-world envi-

ronments. Previously, we have shown that the missing data

(MD) technique for dealing with additive noise in ASR [1, 2]

can also be used to improve robustness to convolutional in-

terference, such as reverberation [3]. In this approach, a con-

ventional hidden Markov model (HMM) recogniser is modi-

fied to deal with missing or unreliable acoustic features [1, 2].

More specifically, the decoder is provided with spectral fea-

tures and a time-frequency mask; each element in the mask

indicates whether the corresponding feature constitutes reli-

able evidence of the speech signal or not.

Reverberation consists of a direct sound component fol-

lowed by an exponentially decaying tail of reflections. The

latter effectively smooths the temporal structure of speech,

while only strongest low-frequency speech modulations re-

main less affected. Hence, in our previous approach a missing

data mask was derived by selecting time-frequency regions in

which strong speech modulations were present, as determined

by modulation filtering. Previously, modulation filtering has

been used to obtain noise robust feature vectors for reverber-

ant speech recognition [4], and for dealing with transmission

line distortion and additive noise [5].

A drawback of the MD approach is that it requires spectral

features, which are more correlated than the cepstral features

normally used with HMM-based ASR systems. Robust esti-

mation of full covariance spectral models requires more data

than is typically available. So rather than use full covariance,

the data is usually modelled crudely using a Gaussian Mix-

ture Model (GMM) with a small number of components. The

problem of adequately modelling spectral data may result in

the robustness obtained using MD techniques being offset by

a fall in baseline recognition accuracy. This was evident in

our previous study [3].

Previously, Kingsbury [4] has shown that good perfor-

mance across a range of reverberation conditions can be

obtained by combining the posterior probabilities from two

recognisers. Specifically, he combined recognisers that used

modulation filtered spectrogram (MSG) and cepstral percep-

tual linear prediction (PLP) coefficients. Even though the per-

formance of the PLP system was substantially below that of

the MSG system in reverberant conditions, the combined sys-

tem was better than either of these alone. Posterior probability

combination has also been used for noise robust ASR in the

multiband approach [6]. To date, the use of feature combina-

tion in the missing data framework for ASR has remained an

untouched issue. We address this issue here by showing how

spectral features and cepstral features can be combined within

the missing data framework, and also describe improvements

to the missing data mask generation.

2. METHOD

2.1. Speech material

The Aurora 2.0 English language telephone digit recognition

corpus (sampling rate 8 kHz) was used for evaluation of the

system [7]. Acoustic models were trained using the clean

(noiseless) speech from the clean training section of the cor-

pus (8440 utterances). For recogniser development and test-

ing, clean speech samples were used for the non-reverberant

condition, and the same clean speech samples were convolved

with room impulse responses (RIRs) to provide the reverber-

I  289142440469X/06/$20.00 ©2006 IEEE ICASSP 2006



ant condition. All 1001 Clean1 test set utterances were se-

lected for the test set, and 300 (150 male, 150 female) differ-

ent utterances from Clean3 were randomly selected for the

development set. Six RIRs were used which were character-

ized in terms of reverberation time T60 (i.e. the time required

for the reverberant sound field to drop by 60 dB after sound

offset) and source to microphone distance (S/R), as shown

in Table 1. RIR1–RIR4 were those used by Kingsbury, and

were recorded in a varechoic chamber [4]; page 90. A further

two impulse responses denoted RIR5 and RIR6 (not used by

Kingsbury) were measured in a larger room. All RIRs were

used for recogniser testing and RIRs 2, 4 and 6 were used for

development.

2.2. Features

Spectral features were obtained from a peripheral auditory

model, which was based on a gammatone filterbank with

32 channels. Channel center frequencies were spaced uni-

formly on the equivalent rectangular bandwidth (ERB)-rate

scale, and had a constant ERB bandwidth of 0.887. The low-

est and highest center frequencies were 50 Hz and 3850 Hz,

respectively. In order to produce features for the recognizer,

the Hilbert envelope of each channel was extracted, smoothed

with a low-pass filter (8-ms time constant), sampled at 10 ms

intervals and compressed by raising to the power 0.3. These

features were supplemented with their temporal derivatives,

giving a total of 64 features per vector. Spectral normalisa-

tion of features was performed as described in [3].

Mel frequency cepstral (MFCC) feature vectors were

computed as described in Aurora 2.0. From the two alter-

natives (with marginal differences) for generating MFCC fea-

tures in Aurora 2.0, we used the version which is based on the

HTK-implementation. The MFCC feature vectors consists of

12 mel-cepstral coefficients (the zeroth term was excluded)

with cepstral liftering, logarithmic frame energy, and first and

second order temporal derivatives (a total of 39 features).

2.3. Training

Three systems were trained using HTK 3.2, which used spec-

tral features alone, MFCC features alone, or combined spec-

tral and MFCC features. The combined training of the spec-

tral features and MFCCs was required to guarantee that auto-

matically defined temporal alignments matched. However, a

concern was that training these features in combination could

produce suboptimal alignments for either feature alone. To

test this possibility, we trained a systems based on spectral

and MFCC features alone for comparison.

Diagonal-covariance Gaussian mixture models (GMM)

were used to model the spectral features and MFCCs, with

seven and three mixture components (for both combined and

alone systems), respectively. For the combined system, sepa-

rate streams were defined for spectral and MFCC features in
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Fig. 1. Dependence of mean (over RIRs 2, 4 and 6) recogni-

tion accuracy on the combination factor a, obtained from the

development set. Crosses show the measured data points.

HTK training. Then for all systems, whole word models were

trained for digits “oh”, “zero” and “one” to “nine” with 16

no-skip straight through states. In addition, a silence model

and short-pause model were trained, with three and one states

respectively.

The setting of the GMM variance floor was found to be

critical in order to achieve good results. The variance floor

was set based on experiments with the development set. For

combined spectral and MFCC feature training the floors were

set to 0.5 and 1.0 times the global variance for spectral and

MFCC features, respectively. For training spectral and MFCC

features alone the floors were set to 0.5 and 0.3, respectively.

We note that those values are much larger than the variance

floor of 0.01 used in the original Aurora 2.0 framework.

2.4. Recognition with combined features

Multiple representations are useful in ASR because different

sets of features can contain complementary information. For

example, if heavy processing to achieve noise robustness is

required for one set of features, this may produce a counter ef-

fect with clean speech due to loss of fine structure. Previously,

feature stream combination has been implemented by either

supplementing the existing feature vector with another set of

features (such as deltas), or by combining posterior probabil-

ities (or likelihoods) of two recognisers that use different sets

of features. In this paper, we introduce an approach in which

the likelihoods from spectral missing data and cepstral feature

streams are combined.

In the missing data approach, unreliable spectral features

xs,u are classified differently from reliable ones xs,r , which

are passed directly to the recogniser. Here we used bounded

marginalisation to deal with unreliable features. If the true

value of the unreliable features is known to lie within low

xs,u,low and high xs,u,high bounds, an estimate f(xs|C) of

the likelihood f(xs|C) can be obtained as follows,

f(xs|C) =
∑M

k=1 P (k|C)f(xs,r |k, C) 1
xs,u,high−xs,u,low∫ xs,u,high

xs,u,low
f(xs,u|k, C)dxs,u

(1)
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Fig. 2. Impulse (left) and magnitude (right) responses of the

modulation filter used in this study.

where k denotes the Gaussian mixture component with a di-

agonal covariance and C is a class of speech sound.

Here, we also have a stream of cepstral features with

likelihood f(xc|C). The combined likelihood f(xs,c|C) is

obtained as the weighted average of missing data spectral

f(xs|C) and full cepstral f(xc|C) likelihoods in the logarith-

mic domain

log(f(xs,c|C)) = a log(f(xs|C)) + (1 − a) log(f(xc|C))
(2)

where the weight a = 0.7 was chosen to yield the best aver-

age performance in recognition experiments using the devel-

opment set (see Fig. 1).

2.5. Mask estimation

Previously we have shown that modulation filtering can be

used to generate a mask for missing data ASR, since it de-

tects strong speech onsets that have not been contaminated by

reverberation [3]. The spectral features xs(i, j) are filtered

along their time trajectories using a band-pass modulation fil-

ter h(k), with 3dB cutoffs at 1.5 Hz and 8.2 Hz,

xs,bp(i, j) =
+∞∑

k=−∞
h(k)xs(i − k, j) (3)

where i indexes discrete time (in frames) and j is the fre-

quency channel. The modulation band-pass filter was de-

signed by convolving a linear FIR low-pass filter hlp with a

differentiator hdiff (i.e., h = hdiff ⊗ hlp). The impulse and

frequency responses of the filter h are shown in Fig. 2; for

detailed filter parameters see [3]. Filtered features xs,bp are

then passed through an automatic gain control (AGC)

xagc
s,bp(i, j) =

xs,bp(i, j)∑+∞
k=−∞ w(k)|xs,bp(i − k, j)| (4)

where the denominator describes a convolution of |xs,bp| with

a triangular window w(k) of length 400 ms, which acts as

a low-pass filter. Kingsbury [4] uses a similar approach for

producing noise robust feature vectors.

The time-frequency mask m(i, j) is produced by applying

a threshold θ(j) to xagc
s,bp(i, j):

m(i, j) =

{
1 if {xagc

s,bp(i, j) − min
i

[xagc
s,bp(i, j)]} > θ(j)

0 otherwise

(5)

The threshold θ(j) is defined for each utterance according to

the extent to which it is reverberated; this is estimated ac-

cording to a metric B which quantifies the ‘blurredness’ of

the speech temporal structure:

B =
1

J

J∑
k=1

⎧⎨
⎩

1
I

∑I
i=1 xs(i, j)

max
i

[xs(i, j)]

⎫⎬
⎭ (6)

Here, J = 32 is the number of frequency channels and I is

the length of the utterance. B is then mapped to the threshold

θ(j) as follows,

θ(j) = γ

1
I

∑I
i=1{xagc

s,bp(i, j) − min
i

[xagc
s,bp(i, j)]}

1 + exp(−α(B − β))
(7)

where α = 19, β = 0.43 and γ = 1.4 were used for the

system that included the AGC. In some experiments the AGC

was not used, by omitting Eq. (4) and substituting xagc
s,bp in

Eq. (5) and (7) with xs,bp. Without the AGC, the mapping

parameters were α = 16, β = 0.42 and γ = 1.24. For a full

account of the blurredness and mapping procedures see [3].

3. RESULTS

Table 1 shows the results of the study. For comparison a sub-

set of the results from [3] are shown, namely our replication

of Kingsbury’s MLP-HMM, MSG+PLP system [4] and our

previous missing data system (MD-04). In the table, MD-A

and MD-NA denote the missing data system with and with-

out the AGC stage, respectively. The label “comb” means that

the recogniser was trained with a combination of spectral fea-

tures and MFCCs. During testing, these feature streams were

tested separately (“MD comb” or “MFCC comb”) or together

(“MD+MFCC comb”). The label “alone” means that the sys-

tem was trained and tested using either spectral missing data

or MFCC features alone.

Substantial improvements in performance were obtained

using the combined MD and MFCC approach. Compared to

the MD-04 system, the proposed combinatorial systems per-

form better in all test conditions, with the largest improve-

ments in the most reverberant test cases. Our system substan-

tially outperforms Kingsbury’s approach in the most reverber-

ant test cases, whereas performance in the least reverberant

case (e.g. RIR1) still remains marginally poorer. The com-

bined MD+MFCC recognizers always perform better than

those which used only MD. The performance of the MFCC

systems is substantially below that of the MD and combined
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RIR T60 Dist MLP-HMM MD-04 MFCC MD-A MFCC MD-A MD-A+ MD-NA MD-NA MD-NA+
(s) S/R MSG+PLP alone alone comb comb MFCC alone comb MFCC

(m) comb comb
clean 98.5 97.0 98.6 96.8 98.2 96.8 98.6 97.1 97.4 98.7
RIR1 0.7 2.35 95.1 93.1 88.4 92.6 83.3 92.6 94.9 93.2 93.4 95.3
RIR2 0.7 3.05 93.5 92.4 85.7 91.5 81.7 91.7 94.6 92.5 92.9 94.9
RIR3 1.2 2.0 71.5 78.4 41.8 83.4 43.7 83.8 84.9 81.9 81.3 84.3
RIR4 1.2 3.05 69.5 76.6 40.9 78.1 43.7 78.5 80.3 76.9 76.9 79.2
RIR5 1.5 6.1 64.0 67.8 48.0 74.4 46.7 74.3 76.4 73.8 73.5 75.7
RIR6 1.5 18.3 59.8 64.3 42.5 68.3 41.2 68.4 70.1 66.5 67.1 69.2

Table 1. Recognition results (accuracy %). Columns two and three show the T60 reverberation time and source/receiver

distance for the reverberation conditions used. MLP-HMM/MSG+PLP data from Kingsbury [4], MD-04 data from Palomäki et

al. [3]. The remaining columns show various recogniser configurations from the new study; see Sect. 3 for details.

MD+MFCC systems, except for the clean test case. The AGC

technique adds a small performance gain in most of the rever-

berant test conditions. However, the performance without the

AGC is better in the clean test case, and in the least reverber-

ant conditions (RIR1 and RIR2).

4. GENERAL DISCUSSION

We have studied ASR in reverberation using an approach that

combines likelihoods from a spectral missing data classifier

and a conventional Gaussian mixture model classifier using

full MFCC vectors. Some improvements in the missing data

mask generation have also been reported. Compared to our

previous system, performance gains were achieved in all test

conditions. The combinatorial system performed better than

Kingsbury’s approach in most of the reverberant test cases,

although Kingsbury’s system is still better for the least rever-

berant case (e.g. RIR1).

Our simulations show that supplementing a spectral MD

classifier with a MFCC-based classifier yields performance

gains across a range of reverberation conditions, even though

the performance of the MFCC system was substantially below

that of the MD system. This suggests that the supplementary

features contain information that is lost in missing data pro-

cessing. Similar observations have been made by Kingsbury

[4], although his hybrid HMM-MLP speech recognition sys-

tem differs substantially from ours.

Future work will investigate the use of the combined prob-

ability approach for dealing with additive noise. Whereas bi-

nary missing data masks have been used here, a further pos-

sibility is that the approach could be applied to missing data

decoders which use real-valued (‘fuzzy’) masks [8].
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