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ABSTRACT

This paper describes a novel approach for extending the proto-

type Gaussian mixture model used in representing different classes

in many recognition or classification systems and its application

to large vocabulary automatic speech recognition (ASR). This is
achieved by estimating weighting vectors to the log likelihood val-

ues due to different elements in the feature vector. This approach

estimates the weighting vectors which maximize an estimate of the

conditional mutual information between the log likelihood score
and a binary random variable representing whether the log likeli-

hood is estimated using the model of the correct label or not. It

is shown in the paper that under some assumptions on the con-

ditional probability density function (PDF) of the log likelihood

score given this random variable, maximizing the differential en-
tropy of a normalized log likelihood score is an equivalent cri-

terion. This approach allows emphasizing different features, in

the acoustic feature vector used in the system, for different hid-

den Markov model (HMM) states. In this paper, we apply this
approach to the RT04 Arabic broadcast news speech recognition

task. Compared to the baseline system, 3% relative improvement

in the word error rate (WER) is obtained.

1. INTRODUCTION

One of the main objectives of speech signal analysis in ASR sys-

tems is to produce a parameterization of the speech signal that
reduces the amount of data that is presented to the speech rec-

ognizer, and captures salient characteristics suited for discriminat-

ing among different speech units. Most ASR systems use cepstral

features augmented with dynamic information from the adjacent
speech frames and a dimensionality reduction technique which is

a variant or an extension of linear discriminant analysis (LDA) [1].

The objective function in all these methods is not directly related

to minimizing the recognition error, and therefore does not nec-
essarily minimize the discrimination loss due to having a unified

representation for all classes. LDA transformation, for example,

tends to preserve distances of already well-separated classes. Con-

ventional systems for automatic speech recognition model these
features, given the HMM state, using the same prototype model of

a diagonal-covariance Gaussian mixture (GMM).

In ASR, like many statistical classification and recognition

problems with many classes, it is commonly the case that different
classes or clusters of classes exhibit significantly different prop-

erties. This motivates using features designed to represent subsets

that exhibit common properties which are not necessarily the same

features used for any class outside this subset or using a prototype

model which is general enough to allow emphasizing different el-
ements of the feature vector for different classes.

The approach of using different features for different classes in
speech recognition and verification has been suggested before [2].

Its main problem, due to the statistical nature of the recognizer, is

how to compare a posteriori probabilities conditioned on differ-

ent sets of features to decode a given utterance. This problem was

addressed for segmental ASR systems that use different sets of fea-
tures for different segments in [3] by adding extra reference mod-

els that have no physical meaning but are used to normalize the

likelihoods to be comparable statistically. Other approaches, like

[4] and [5], generate class-dependent features by class-dependent
linear transforms from an original set of features which span the

same original feature space.

In this paper, we present a novel approach for improving

the performance of automatic speech recognition systems by us-

ing state-dependent weighting of the log likelihood scores due to

different elements in the feature vector. Using the fact that the
diagonal-covariance constraint allows the estimation of the log

likelihood of an observation given a Gaussian component as the

sum of the log likelihoods due to the different elements in the fea-

ture vector, this approach can be presented as a generalization of
the GMM prototype model used for representing HMM states, and

therefore does not have the problem of comparing likelihoods cal-

culated using different sets of features. The weighting vectors are

estimated such that the conditional mutual information of the log
likelihood score and a binary random variable indicating whether

the state model used in calculating the log likelihood of the frame

is the correct state or not is maximized. This estimate of the mutual

information is conditioned on the maximum likelihood estimated
HMM model. We show that maximizing this objective function is

equivalent to maximizing the differential entropy of a normalized

log likelihood score under Gaussianity assumption of the log like-

lihood conditional PDF given the value of the binary random vari-
able. As the weighting vectors are state-dependent, our approach

improves the performance of the system by emphasizing different

elements of the feature vector for different HMM states without

having to change either the feature vector or the HMM model.

In the next section, we will formulate the problem and describe

the objective criterion. In Section 3, the algorithm used in estimat-

ing the weighting coefficients to optimize the objective criterion
is described. The experiments performed to evaluate the perfor-

mance of our approach are described in Section 4. Finally, Section

5 contains a discussion of the results and future research.

We will use capital letters to represent random variables and

vectors and the corresponding small letters to denote realizations

of these random variables and vectors.
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2. PROBLEM FORMULATION

In this section, we will discuss how to estimate the conditional mu-

tual information of the log likelihood acoustic score and a binary

random variable representing whether the log likelihood score is
calculated using the correct state or not and then show how the

problem can be reduced to a maximum differential entropy prob-

lem.

The mutual information of the log likelihood score and the
binary random variable representing whether the log likelihood is

calculated using the correct state is

I(S, B) = H(S) − H(S|B), (1)

where S is the log likelihood acoustic score of an observation vec-
tor, B is the binary random variable, H(S) is the differential en-

tropy of the log likelihood acoustic score, and H(S|B) is the con-

ditional differential entropy of the acoustic log likelihood score

given the value of the binary random variable.

We estimate the conditional mutual information given the
HMM model trained using maximum likelihood estimation.

Therefore the acoustic log likelihood values for each frame in the

training data is calculated using this HMM model as

sρ
kt = log P (Okt|ρ), (2)

where P (Okt|ρ) is the likelihood of the observation Okt at frame t
of the kth utterance given the HMM state ρ. Using state-dependent

weighting of the contributions to the likelihood due to different

feature elements and replacing the sum over the Gaussian compo-

nents by the maximum,

log P (Okt|ρ) =
nX

j=1

wj
ρ log P (Oj

kt|m∗
ρ), (3)

where m∗
ρ = arg maxmρ

`
HmρP (Okt|mρ)

´
, Hmρ is the weight

of the Gaussian component mρ of the Gaussian mixture model of
state ρ, wj

ρ is the weight for stateρ of the log likelihood corre-

sponding to the jth element of the feature vector, and n is the di-

mension of the feature vector. We note that the baseline HMM us-

ing diagonal-covariance Gaussian mixture model for each state is
equivalent to using an all-one weighting vector. To be able to com-

pare the likelihood values estimated using different HMM states

and to guarantee that the likelihood function will integrate to one

over all the observation space, it can be shown that the following
constraints on the weighting coefficients for each state are neces-

sary and sufficient

wj
ρ > 0 for 0 < ρ ≤ K, 0 < j ≤ n, (4)

and

MρX
mρ=1

Hmρ

nY
j=1

`√
2πσjmρ

´1−wj
ρq

wj
ρ

= 1

for 0 < ρ ≤ K, (5)

where K is the total number of HMM states, σ2
jmρ

is the vari-
ance of the mth Gaussian component of state ρ corresponding to

the jth element in the feature vector, and Mρ is the total number

of Gaussian components for the state ρ. The set of equality con-

straints in Equation 5 can be approximately satisfied by using a

penalty function that is less than zero and equal zero if and only

if the constraints are satisfied to modify the objective function to

be maximized. We will discuss how the set of constraints in Equa-
tions 4 and 5 are imposed in the next section.

By using two Gaussian mixture models to model P (S|B = 0)
and P (S|B = 1) and replacing the expectation in the expressions

of the differential entropy, H(S), and the conditional differential

entropy, H(S|B), with the sum over all possible word sequences

in the lattice, we get the following estimate of the maximum con-
ditional mutual information (MCMI) objective function

Î =

NX
k=1

TkX
t=1

KX
ρ=1

(γρ
kt (log P (sρ

kt|bρ
kt) − log P (sρ

kt))) , (6)

where N is the number of training utterances, Tk is the length
of the kth utterance in frames, γρ

kt is the sum of the a posteriori
probabilities of the state ρ at frame t of utterance k over all word

sequences in the lattice, bρ
kt = 0 if the state ρ is the correct HMM

state for frame t from the training utterance k and bρ
kt = 1 if ρ is a

different HMM state,

P (S) = q(B = 0)P (S|B = 0) + q(B = 1)P (S|B = 1), (7)

where q(B) is the probability mass function of the binary random

variable B.

We will investigate also an alternative approach to calculat-

ing an estimate of the objective function by noticing that if both

P (S|B = 0) and P (S|B = 1) are Gaussian PDFs with mean µ0

and µ1 and variance σ2
0 and σ2

1 respectively and using a normal-

ization of the log likelihood score in the form

s̃ρ
kt =

sρ
kt − µb

ρ
kt

σb
ρ
kt

, (8)

where bρ
kt is 0 in case ρ is the correct state model for frame t of

the kth training utterance and 1 if otherwise, the conditional dif-
ferential entropy of the normalized log likelihood score, S̃, is con-

stant. Therefore maximizing the conditional mutual information

of the normalized log likelihood score, S̃, and the binary random

variable B is equivalent to maximizing the differential entropy of
S̃. Since the variance of S̃ is constant, the differential entropy of

the normalized log likelihood score is maximized if and only if its

probability density function (PDF) is Gaussian [6]. Hence, maxi-

mizing the differential entropy of the the normalized log likelihood
score becomes a maximum likelihood problem. In which, we max-

imize the likelihood that the normalized log likelihood score is a

Gaussian random variable. In this case, the maximum differential

entropy (MDE) objective function to be maximized is

L =
NX

k=1

TkX
t=1

KX
ρ=1

„
γρ

kt

„
−1

2
log σ2 − (s̃ρ

kt − µ)2

2σ2

««
, (9)

where µ is the mean of the normalized log likelihood Gaussian

PDF which equals 0, and σ2 is the variance of the the normalized
log likelihood Gaussian PDF which equals 1.

As discussed before, we introduce a weighting vector for each
state to weight the log likelihood values corresponding to differ-

ent elements of the feature vector and estimate the values of these

weights which maximize the objective function in Equation 6 or

Equation 9.
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3. IMPLEMENTATION

In this section, we present our implementation of the approach de-
scribed in the previous section. Our goal is to calculate the state-

dependent weights of the log likelihood scores, {wj
ρ}ρ=K,j=n

ρ=1,j=1 ,

where K is the number of states in the HMM, which maximize

the MCMI and MDE objective functions in Equations 6 and 9
respectively.

To calculate these weights which maximize the MCMI or the

MDE objective function subject to the constraints in Equations 4
and 5, we can use an interior point optimization algorithm with

penalized objective function [7]. Alternatively to simplify the op-

timization problem, we impose the constraints in Equation 5 by

normalizing the weights of the Gaussian components of each state
model using the relation

Hr
mρ

=
Hmρ

Qn
j=1

(
√

2πσjmρ)1−w
jr
ρ

q
w

jr
ρ

, (10)

where Hmρ is the original maximum likelihood estimate of the
Gaussian component weight, and Hr

mρ
is the normalized Gaussian

component weight at the rth iteration, wjr
ρ is the weight for state

ρ of the log likelihood corresponding to the jth element of the
feature vector at the rth iteration. Therefore the problem is reduced

to maximizing the objective function subject to the constraints in

Equation 4. This is an optimization problem over a convex set and

we use the conditional gradient method to calculate the weighting
vectors [7].

Using the conditional gradient algorithm, the value of the

weights are updated in each iteration using the relation

W r+1
ρ = W r

ρ + αr+1(W̄ r
ρ − W r

ρ ), (11)

where W r+1
ρ is the weighting vector at iteration r + 1, W r

ρ is
the weighting vector at iteration r, and αr+1 is a step size that

should be chosen small enough to guarantee convergence and large

enough to reduce the number of iterations required to achieve con-

vergence,

W̄ r
ρ = arg max

Wρ>0
(Wρ − W r

ρ )T ∂Î

∂Wρ
|Wρ=W r

ρ
, (12)

where ∂Î
∂Wρ

is the gradient of the objective function. The Armijo

rule is used to estimate the step size αr+1 at each iteration [7].

We update also the parameters of the HMM model using max-
imum likelihood estimation by using a likelihood function that

takes into account the values of the weighting vectors and the nor-

malized Gaussian mixture weights in the current iteration.

The gradient of the MCMI objective function in Equation 6
with respect to the state-dependent weighting vectors is

∂Î

∂Wρ
= −

NX
k=1

TkX
t=1

γρ
kt

MbX
m=1

γmb
kt

(sρ
kt − µmb)

σ2
mb

V ρ
kt

+

NX
k=1

TkX
t=1

γρ
kt

0
@ 1X

f=0

q(f)

MfX
m=1

γmf
kt

(sρ
kt − µmf )

σ2
mf

V ρ
kt

1
A ,

(13)

where Wρ is the weighting vector for state ρ, γρ
kt is the sum of

the posterior probabilities of the state ρ at frame t of utterance

k over all word sequences in the lattice for this utterance of the
training data, γmb

kt is the posterior probability of the mth Gaus-

sian component of the Gaussian mixture model of P (S|B = b),

µmb and σ2
mb are its mean and variance respectively , sρ

kt is the

best log likelihood score for frame t of utterance k using a Gaus-
sian component of the state ρ GMM model, q(f) is the prior

probability mass function of the binary random variable B, and

V ρ
kt =

ˆ
sρ0

kt , s
ρ1
kt , . . . , s

ρj
kt, . . . , s

ρn
kt

˜
is the vector of log likelihood

values for frame t of utterance k using the state ρ corresponding to
different elements in the feature vector.

For the second implementation, we used the MDE objective

function in Equation 9 instead of the MCMI objective function.

The gradient of the MDE objective function with respect to the
state-dependent weighting vectors is

∂L

∂Wρ
= −

NX
k=1

TkX
t=1

γρ
kt

sρ
kt

σb
ρ
kt

V ρ
kt. (14)

The calculation of the gradient of both the MCMI and the
MDE objective functions requires the generation of the posterior

probabilities of the HMM states for each frame in the training data

which is computationally expensive and therefore many approx-

imations were used before for discriminative training of HMM
models for large vocabulary ASR systems. The most successful

approach that is adopted here is to use word lattices that fully en-

code sequential acoustic and language model constraints, [8]. Lat-

tices are generated once using the MLE baseline acoustic HMM
model and a unigram language model and then used repeatedly

for several iterations. Given the word lattice, a forward-backward

pass at the word lattice node/arc level is used to generate the pos-

terior probability of a given arc. Then the Viterbi state-level seg-
mentation for each arc was found and used with the posterior arc

probabilities to estimate the gradient of the objective function.

4. EXPERIMENTS AND RESULTS

This section gives the experimental results of applying our ap-

proach using the two objective functions described in the last sec-
tion on the Arabic DARPA 2004 Rich Transcription (RT04) broad-

cast news evaluation data. The raw features for the baseline ASR

system used in the tests were 13-dimensional MFCC features com-

puted every 10 ms. from 25-ms. frames with a Mel filter bank
that spanned 0.125–8 kHz. The recognition features were com-

puted from the raw features by splicing together nine frames of

raw features (±4 frames around the current frame), projecting the

117-dim. spliced features to 60 dimensions using an LDA projec-
tion, and then applying maximum likelihood linear transformation

(MLLT) to the 60-dim. projected features to reduce the mismatch

between the statistics of the final features and the constraints of

the diagonal-covariance Gaussian mixtures that model the HMM

observation densities.
The acoustic model training data were 70 hours of the for-

eign broadcast information services (FBIS) and the Arabic topic

detection and tracking (TDT) databases provided by the Language

Data Consortium (LDC). The acoustic model consisted of 5307
context-dependent states and 149K diagonal-covariance Gaussian

mixtures. The states were clustered using decision trees that could

ask questions about phone identity across words in a ±5-phone

window. The number of Gaussian mixtures assigned to a state was
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System WER

Baseline 33.8

MCMI Weights 32.9

MDE Weights 32.8

Table 1. Word error rates (%) on the Arabic RT04 evaluation data

using the SI systems.

System WER

Baseline 28.8

MCMI Weights 27.9

MDE Weights 27.9

Table 2. Word error rates (%) on the Arabic RT04 evaluation data

using the SAT systems.

chosen proportional to the logarithm of the number of observa-

tions in the training data which belongs to the state. The phonetic

transcription in Arabic requires the existence of certain diacritic
symbols which are usually not found in text transcriptions, and

hence we use the one-to-one grapheme-to-phoneme approach [9].

The phoneme set consists of 38 phoneme and each phoneme is

represented by 5 HMM states with left-to-right topology.

The decoding consists of two passes: the first pass outputs a

lattice which is used to adapt the models, and the second decod-

ing pass uses the adapted models to generate the final output of

the decoder. In the context of speaker-adaptive training to produce
canonical acoustic models, we use feature-space maximum likeli-

hood linear regression (MLLR), [10]. We do also a single pass of

MLLR adaptation, using a regression tree to generate transforms

for different sets of mixture components, [10].

The language model is a 64K vocabulary 30M n-gram inter-

polated back-off trigram language model. It is built from the Ara-

bic Giga-word text corpus distributed by LDC and the transcripts
of the audio training data and some Arabic news web resources.

The out of vocabulary (OOV) rate on the test data is 5.9% and the

preplixity is 450.

We tested estimating the weighting vectors using both the
MCMI objective criterion in Equation 6 and the MDE criterion

in Equation 9 and compared the results to the baseline system

trained with maximum likelihood estimation and without using

any weighting of log likelihood values. The estimation of the
weights using the MCMI criterion converged after six iteration of

the conditional gradient algorithm, while using the MDE criterion,

it converged after four iterations.

As shown in Table 1, the speaker-independent results im-
proved by 3% relative compared the baseline for both systems

using weighted log likelihood scores. The two systems with the

weights estimated using MCMI and MDE performed almost the

same.

The results after speaker adaptation reflects the same improve-

ment over the baseline system as shown in Table 2. The MCMI and

MDE systems gave exactly the same word error rate after speaker

adaption.

5. DISCUSSION

In this paper, we examined an approach for state-dependent

weighting of the log likelihood scores corresponding to different

feature elements in the feature vector. We described two similar
criteria to estimate these weights : the first maximizes the condi-

tional mutual information of the log likelihood value and a binary

random variable indicating whether the frame was scored by the

correct state or not, the second maximizes the same objective func-
tion, but after normalizing the log likelihood score and under the

assumption that the conditional PDF of the log likelihood score

given the value of the binary random variable is Gaussian, it is

equivalent to maximizing the differential entropy of the normal-
ized log likelihood score. We applied this approach to the DARPA

Arabic RT04 evaluation data. This approach decreased the word

error rate by 3% relative compared to the baseline system for both

the speake-independent and speaker-adapted systems. This im-
provement can be attributed to emphasizing scores corresponding

to important features in the feature vector for each state.

Further investigation of the performance of our approach on

other evaluation tasks will be our main goal. We will consider also

other objective functions to estimate the state-dependent weights.
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