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ABSTRACT

We investigate algorithms for training hidden conditional random

fields (HCRFs) —a class of direct models with hidden state sequences.

We compare stochastic gradient ascent with the RProp algorithm,
and investigate stochastic versions of RProp. We propose a new
scheme for model flattening, and compare it to the state of the art.
Finally we give experimental results on the TIMIT phone classifi-
cation task showing how these training options interact, comparing
HCRFs to HMMs trained using extended Baum-Welch as well as
stochastic gradient methods.

1. INTRODUCTION

Hidden conditional random fields (HCRFs) [1, 2] are a class of dis-

criminative models that generalize both hidden Markov models (HMMs)

and conditional random fields [3]. As such, they are ideally suited
for speech recognition and classification problems, as they allow the
use of hidden state sequences as with HMMs and arbitrary depen-
dencies upon the acoustics as with CRFs. Unlike HMMs, HCRFs
are capable of modeling long range acoustic dependencies, and do
not require that acoustic processing be uniform across states.

HCREFs are direct models, giving the conditional probability of
state sequences given the observed acoustics. The model has a sim-
ple exponential (“maximum entropy”) form, with the conditional
probability of the state sequence being modeled through a feature
vector that is a function of the state sequence as well as the acous-
tic observation sequence. The dependence of the feature vector on
the entire observation sequence is arbitrary, but the dependence on
the state sequence is constrained to ensure that the state sequence is
Markov given the observation sequence. This is the key difference
between HCRFs and HMMs — HCRFs model the state sequence as
being conditionally Markov given the observation sequence, while
HMMs model the state sequence as being Markov, and each obser-
vation being independent of all others given the corresponding state.
Since the model is never used to evaluate the probability of observa-
tions, the second assumption is unnecessary.

Since HCRFs are conditional models, they can only be trained
using discriminative criteria such as conditional maximum likeli-
hood. In [1], we showed that HCRFs can be trained by direct op-
timization of the conditional log likelihood using gradient methods.
HCRFs trained using stochastic gradient ascent [4] outperformed
HMMs trained using the extended Baum Welch (EBW) algorithm
on the TIMIT phone classification task, and improved the state of
the art. Prior work on estimating HMMs under the maximum mutual
information (MMI) criterion [5, 6] and the minimum classification
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error (MCE) criterion [7] clearly show that the algorithm used in es-
timation has a strong influence on performance, even when the train-
ing criterion and model family are fixed. In this paper, we perform
a similar set of experiments to determine how best to train HCRFs.
Although we only present results for phone classification, there is no
inherent limitation in the HCRF framework that precludes the use of
HCREFs for recognition.

The paper is organized as follows. In Section 2 we briefly review
the details of HCRFs and their relationship to HMMs. In Section 3
we explore different options for training HCRFs. Section 3.1 reviews
gradient ascent and RProp [8], which is a gradient based algorithm
that uses an adaptive step size. Section 3.2 discusses the possibility
of making stochastic parameter updates based on random samples
of the training data rather than using the entire training set. In Sec-
tion 3.3, we review the need for model flattening during training, and
introduce a novel flattening technique for HCRFs. Section 4 presents
results on the TIMIT phone classification task that illustrate how best
these techniques can be combined in HCRF estimation. Finally, we
discuss our findings and conclude in Section 5.

2. THE MODEL

In [1], we introduce the HCRF as an exponential model that gives
the conditional probability of a segment (phone) label w given the
observation sequence o = (01, - - - , or) through

plwles ) = s Sep A fws.o)}. ()

The partition function z(0; A) ensures that the model is a properly
normalized probability over w, and is given by

z(o;\) = Z exp{\- f(w,s,0)}.

w,sEwW

X is the parameter vector and f(w, s, 0) is a feature vector' of arbi-
trary functions of w, s, and o. As discussed in [1], the conditional
probability induced by an HMM can be written in the exponential

INote that in this context, the term feature vector refers to the vector of
sufficient statistics used by the model, and not to the output of the acoustic
front-end. The latter will be referred to as an observation vector.
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form above, with the feature vector f having components

fifM) (w,s,0) = d(w = w,) V'
T
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t=1
T
£ w,s,0) =D 5(s: = 5) Vs Q)
t=1
T
fs(lul)(wvsv O) = 25(515 = S)Ot Vs
t=1
T
5(1M2) (w,s, 0) - Z(s(st = 5)0§ VS,
t=1

where 6(s = s’) is equal to one when s = s’ and zero otherwise.

(LM)

Each (unigram) language model feature f;”~ ’ triggers on the occur-

rence of the label w. The transition features fs(?) count the number
of times the transition ss’ occurs in the state sequence s, while the
occupancy features fS(O“C) count the occurrences of the state s. The
first and second moments fS(Ml) and fS(MQ) are the sum and sum of
squares of observations that align with the state s. In this paper, we
will only address HCRFs that use the same choice of feature vec-
tor. As described in [1] this choice of feature vector ensures that
the state sequence is Markov given the observation sequence. This
allows the use of efficient forward and backward recursions to com-
pute the statistics needed during training and decoding.

Although we describe HCRFs with the same feature vector as
HMMs, not all such HCRFs yield posterior probability distributions
achievable by HMMs. This is because HMM posterior distributions
are HCRFs with constrained parameter vectors. These restrictions
ensure that the HMM transition probabilities are normalized and that
the variances are positive (or that the covariance matrix is positive
definite). Specifically, an HMM with transition probabilities agg-,
emission means i, emission covariance o2 and unigram probabil-
ity u, can be viewed as an HCRF with parameter vector A with
components

AEM = Jogu,, V'
/\g/r) =log a.y Vs, s’
2
,\20“) = —% <log 2rol + %) Vs
AMY = B Vs
o§
(m2) 1
)‘S = —E VS.

Conversely, every HCRF with the feature vector of equation (2) can
be viewed as an HMM with unnormalized transition probabilities
(and mixture weights), and possibly negative variances. Although
the “negative variances” preclude the use of these “HMMSs” in gen-
erative mode, they still yield valid conditional distributions.

Note that for simplicity, we have only given expressions for us-
ing scalar observations and single Gaussian emission densities, al-
though the arguments hold for vector valued observations and mix-
ture densities. We treat the multiple mixture component case by in-
terpreting s as a joint sequence of states and mixture components. In
fact, all experiments were performed with the familiar vector valued
observations and diagonal covariance Gaussian mixture emissions
(and corresponding HCRFs).

3. ESTIMATING HMMS AND HCRFS

3.1. Training Algorithms

We examine several algorithms for optimizing an HCRF to maxi-
mize the conditional log likelihood

N
L) = logp(w™[o!™; \)

n=1

of the training data (w™,0™), ... (w®™ o). In the case of
HMMs, this is a well studied problem, with extended Baum-Welch
(EBW) and its variants being popular solutions [6], as they ensure
that the parameter constraints are maintained from iteration to itera-
tion.

In the case of HCRFs, we will examine two gradient based tech-
niques. The gradient of the conditional log-likelihood is given by

N
L= 3" fw™,s,0")p(s|w™, 0" N)

n=1scw(n)

— 3 fw,s,0M)p(w,slo™; N).

w,sEw

Substituting the vector of sufficient statistics f from equation (2)
into the gradient, it can be shown that the first and second terms are
the “numerator” and “denominator” counts used in EBW estimation
of HMMs [6], which are easily computed.

If £(X) were to be optimized by gradient ascent, the components
of A would be updated according to

AT = A v c(A™),

where V; represents the ith component of the gradient with respect
to A. The size of an update step is proportional to the gradient. On
the other hand, RProp [8] is an algorithm that updates each compo-
nent of A using updates such as

A=A 40 sgn (VL))

(r)

i

that use only the sign of the gradient. The step size 7
adaptively according to

is updated

0.5n") ifsgn (V.LAT"D)V,L(AM)) <0,

120" ifsgn (V,LOATD)V,L(A)) > 0.

k3

Thus, RProp accelerates through “flat” areas of the parameter space,
and decelerates when a local optimum is passed. Note that the RProp
algorithm [8] includes features such as backtracking which are not
shown in the discussion above. RProp is promising for estimating
HCRFs because the optimal step size can be very different for dif-
ferent components of A in different areas of the parameter space.

While it is clear how to apply the gradient based algorithms
above to HCRFs, it is less clear how to apply them to HMMs, where
the parameters are constrained. While gradient based updates can be
used for the means and the logs of the variances, it is unclear how to
optimize transition probabilities and mixture weights. One option is
to ignore the sum-to-one constraints and optimize the log probabil-
ities using gradient updates [5]. However, this yields HCRFs rather
than HMMs. The other is to re-normalize the transition probabilities
and mixture weights after every gradient-based update [9]. How-
ever, the renormalized update is no longer guaranteed to increase the
objective function.
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3.2. Batch vs. Stochastic Updates

Since the training sets used in speech recognition are typically large,
the complexity of estimation is typically dominated by the compu-
tation of the gradient of the log-likelihood over the training set. On
the other hand, the gradient computed over a random subset (even
a single example) can be viewed as an estimate of the true gradient,
and used to update the parameter, allowing many updates to be made
during each pass over the training set, possibly yielding faster con-
vergence. In [1], we reported that HCRFs optimized using stochastic
gradient ascent outperformed those optimized using an approximate
second order gradient method known as L-BFGS [10]. We also re-
ported that stochastic gradient ascent converged much faster than
L-BFGS. In this paper, we examine whether RProp can also be used
in stochastic mode.

3.3. Flattening

It is well known that obtaining good test set performance with EBW
based estimation of HMMs requires the use of a flattening constant
K so that the criterion actually optimized is

Zlog p (w(n)‘o(n) )\)
2w Pr(wlo(™; X)

A 5,000 ] "
[Scuon X720

- 1’; log Zw [ZsGw e)\'f(w,s,o(nn] "

This is necessary because the initial models are often overly sharp,
assigning too high a probability to the best hypothesis, which causes
other hypotheses to have little influence during training.
In the case of HCRFs, it is natural to also consider flattening
using
Se“,(n) enxf(w(n) ,s,0(m))

log —~
Z z zse erA-f(w,s,0(m))

n=1

While the former option flattens the posterior distribution over hy-
potheses (labels in the case of classification, aligned label sequences
in the case of recognition), the second option flattens the posterior
distribution over state and mixture component sequences. Hypothe-
sis flattening has the property that it does not change the ranking of
hypotheses by the model, while state sequence flattening may change
the ranking of hypotheses. On the other hand, state sequence flatten-
ing of HCRFs has the advantage of being easily implemented by
scaling the initial parameter vector.

We note that while hypothesis flattening has the effect of increas-
ing the entropy of the posterior probability of hypotheses given the
observation sequence, it does not increase the entropy of the poste-
rior probability of state (and mixture component) sequences given a
hypothesis and the observation sequence. In contrast, state sequence
flattening increases the entropy of the posterior probability of state
sequences given the observation. In other words, state sequence flat-
tening can overcome the undesirable effect of locking of the state
alignment caused by an overly sharp initial model. We note that the
use of this form of flattening to control the entropy of the state se-
quences is in the same spirit as the flattening of classifier posterior
distributions in deterministic annealing [11].

4. EXPERIMENTAL RESULTS

We compare the training procedures described above on the TIMIT
phone classification task, using the experimental setup described in
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Fig. 1. The development test classification error rate (CER) of batch
RProp and stochastic gradient ascent (SGA) using hypothesis flat-
tening (hyp) and state sequence flattening (state), as a function of
the number of passes through the training data. The horizontal line
shows the performance of the ML trained HMM with which the
HCRFs were initialized. The momentary degradation in hypothe-
sis flattened RProp is due to an aggressive choice of initial step size
and disappears with more conservative settings. However, this is the
setting that gave the best eventual performance.

[1]. Results are reported on the MIT development test set [12] and
the NIST core test set. The training, development, and evaluation
sets have 142,910, 15,334, and 7333 phonetic segments respectively.
We follow the standard practice of building models for 48 different
phones, and then mapping down to 39 phones for scoring purposes
[12]. We use a standard 39-dimensional Mel-Frequency Cepstral
Coefficient (MFCC) front end with mean and variance normaliza-
tion. We adjust segment boundaries given in the corpus to coincide
with per-utterance segment boundaries, enabling easier processing
with HTK [13]. This caused slight changes in performance com-
pared to using the hand annotated boundaries. All systems were
initialized from an ML trained HMM model with a three state left to
right model and 20 diagonal Gaussians per state. We tested HCRF
models with exactly the same topologies and feature vectors f. All
parameters of the algorithms such as stopping point, step size, and
flattening weight were tuned on the development set by performing
ten iterations of training. The best settings discovered were then
used on the evaluation set.

We first compared the performance of stochastic gradient ascent
with (batch) RProp, using either state sequence or hypothesis flat-
tening. As shown in Figure 1, state sequence flattening causes the
initial performance to degrade, while hypothesis flattening does not,
as was discussed in Section 3.3. Under stochastic gradient ascent,
the performance of state sequence flattening quickly improves and
beats the performance of hypothesis flattening, while (batch) RProp
takes longer to recover from the initial degradation. This may be
explained by the fact that stochastic gradient ascent makes multiple
parameter updates per iteration through the training set.

The results in Figure 1 represent two extremes. Stochastic gra-
dient ascent updates the parameter based on just one utterance at
a time, while RProp uses the entire training set. As discussed in
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Fig. 2. The development test CER of stochastic RProp (SRProp) and
stochastic gradient ascent (SGA) using hypothesis flattening (hyp)
and state sequence flattening (state), as a function of batch size in
number of utterances.

Model EBW SGA SRProp
HMM 24.9% 23.2% 22.9%
HCRF 21.7% 21.3%

Table 1. Classification error on the evaluation test set for HMMs
and HCRFs trained using stochastic gradient ascent (SGA), stochas-
tic RProp (SRProp) and extended Baum-Welch (EBW). Training pa-
rameters such as step sizes, flattening weights, flattening schemes,
and batch sizes were tuned on the development test set. HMM re-
sults are presented for hypothesis flattening only.

Section 3.2, both gradient ascent and RProp could be used to make
stochastic updates to the parameters on the basis of batches con-
sisting of any number of training examples at a time. In addition,
Figure 1 indicates that the optimal flattening scheme may depend on
the batch size used.

Figure 2 explores this dependency of error rate on training batch
size and flattening scheme for stochastic gradient ascent and stochas-
tic RProp. It can be seen that state sequence flattening gives better
results at almost all batch sizes, that stochastic gradient ascent out-
performs stochastic RProp, and that stochastic RProp outperforms
batch RProp. The optimal batch size for stochastic RProp is much
larger than for stochastic gradient ascent. This is probably due to the
fact that RProp disregards the magnitude of the estimated gradient
allowing small errors in estimating the gradient to potentially cause
large steps in the wrong direction.

Finally, we compare the best performance obtained with HCRFs
trained with stochastic gradient ascent and stochastic RProp with
that obtained using HMMs trained with these algorithms, as well as
with EBW. The results are shown in Table 1. For comparison, the
best generative (ML) HMM CER is 25.81%. The gradient based
HMM estimates followed the procedure outlined in [9], ignoring the
variance terms in the gradients of the mean. We were unable to get
an improvement with the rescaled transition and mixture weight up-
dates. State sequence flattening was not attempted with HMM:s.

5. CONCLUSIONS

The results indicate that stochastic RProp performs as well as stochas-
tic gradient ascent and better than batch RProp for estimating HCRFs,
giving state of the art performance. However, RProp may be prefer-
able as it is more robust to the step size parameter. Our proposed
state sequence flattening performs significantly better than hypoth-
esis flattening after an initial degradation. The anecdotal evidence
that hypothesis flattening performs better for HMM estimation with
EBW may be due to this initial degradation. We conjecture that this
may be overcome even in HMM estimation by either carrying out
more frequent (stochastic) updates or by carrying out more iterations
of EBW, as we have shown for HCRFs.
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