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ABSTRACT

Our previous study on maximum relative margin estimation (MRME)

of HMM ([7, 8]) demonstrated its advantage over the standard mini-
mum classification error (MCE) training. In this paper, we report our

recent improvement on MRME. Specifically, two novel approaches

are proposed to handle recognition errors in training sets for the

MRME. One is a new training criterion based on a combination
of MRME and MCE objective functions. The other approach pro-

poses to remove a strong constraint in the original MRME algorithm,

so that MRME algorithm can be applied to all training data as op-

posed to only correctly recognized data in the original MRME ap-
proach. Both new approaches can take advantage of more training

data during the large margin training and can bootstrap directly from

MLE models without a separate MCE training step. Improvement

on recognition accuracy has been achieved on a speaker indepen-
dent connected digit strings recognition task using the TIDIGITS

database.

1. INTRODUCTION

In automatic speech recognition (ASR), discriminative training has

been extensively studied over the past decade and it has been proved

quite effective to improve performance over the traditional maxi-
mum likelihood (ML) method for HMM-based speech recognition

systems. Two popular discriminative training methods are minimum

classification error (MCE) training and maximum mutual informa-

tion (MMI) training. But as reported by many researchers, all these
discriminative training methods have poor generalization capability.

In other words, they can significantly improve HMMs and leads to a

dramatic error reduction on training data but such a significant per-

formance gain can hardly be maintained or generalized in any unseen
test set. Usually only a marginal gain can be achieved over the ML

method in a new data set, especially for large-scale tasks.

Motivated by some recent advances in machine learning about

large margin classifier, recently we proposed two novel trainingmeth-
ods, namely large margin estimation (LME) [5, 6] and maximum

relative margin estimation (MRME) [7, 8] for speech recognition. In

LME or MRME, HMM parameters are estimated to maximize the

minimum margin among all training utterances. Significant accu-
racy improvement over MCE has been achieved on both isolated-

word and continuous digits recognition task. Both LME and MRME

only use correctly recognized training data to estimate HMM mod-

els based on the principle of large margin and they usually ignore all
mis-recognized data in the training set. They typically rely on a prior

MCE training step to reduce the total number of mis-recognized ut-
terances in the training set. As a result, they usually bootstrap from

the MCE-trained model [5, 6, 7, 8] and therefore the overall training

time is longer than the MCE-only method. Moreover, as we extend

the string-level MRME [8] to large vocabulary continuous speech
recognition (LVCSR) tasks, there is usually only a very small per-

centage of the training utterances that can be correctly recognized in

string level even after the separate MCE training stage. The benefit

of the original LME or MRME method may be greatly limited due
to lack of applicable training utterances.

In this paper, we propose two different approaches to handle

mis-recognized utterances in training sets in MRME to further im-

prove the MRME method. The first approach is to minimize a new

objective function, which is a weighted linear combination of the
original MRME objective function and an MCE objective function.

This new training approach basically applies MRME training and

MCE training at the same time. The second approach proposes to re-

move a strong constraint in the original LME and MRME methods.
It changes the definition of support token set in LME and MRME

so as to include misrecognized training utterances as well. Now

the MRME objective function is optimized over all training utter-

ances as opposed to only correctly recognized utterances in the orig-
inal MRME approach. Both new approaches can bootstrap directly

from MLE models and does not require a seperate MCE training

any more. They have achieved improvement on recognition accu-

racy over the original MRME approach on TIDIGITS corpus. The
second approach has achieved a string error rate as low as 0.76% on

the standard TIDIGITS test set, which is, to our knowledge, the best

result that has ever been reported in this task.

The remainder of this paper is organized as follows. First of all,

we briefly summarize the MRME formulation for HMMs in speech
recognition in section 2. Next, in section 3, we will present the first

new approach based on the new objective function as well as a gradi-

ent descent method using the new training criterion. Then, in section

4 we will propose our second new approach, which is based on a new
definition of support token set. Experimental results on the TIDIG-

ITS task are reported and discussed in section 5. Finally, the paper

is concluded with our findings and future works in Section 6.

2. MAXIMUM RELATIVE MARGIN ESTIMATION

In ASR, given any continuous speech utterance X, a speech recog-

nizer will choose the string Ŝ as output based on the MAP decision
rule as follows (without loss of generalization, here we only give the
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formulation of string model based MRME for continuous speech,

where S represent the concatenated model for a string. But it can be

applied to other cases as well, for example isolated word case as in
[7]):

Ŝ = arg max
S

p(S|X) = arg max
S

p(S) · p(X|S)

= arg max
S

p(S) · p(X|λS) = arg max
S

F (X|λS) (1)

where λS denotes the HMM representing the string S and F (X|λS)
is called discriminant function. As we are only interested in HMM

λS , assume p(S) is fixed.
In MRME, the HMM parameters are estimated in such a way

that the decision boundary of the HMM-based classifier achieves the

maximum classification margin as in other large margin classifiers,

such as support vector machine. According to the statistical learning
theory [10], a large margin classifier generally yields good general-

ization capability when classifying new unseen data. In [3, 6], the

margin is defined as the minimum difference of log likelihood values

between the true model and all of its competing models. However,
the margin defined in this way has been shown to be unbounded.

In MRME, we instead define the margin as a relative margin [7, 8],

which is bounded by definition.

For a speech utteranceXi in the training data setD = {X1, X2,

· · · , XN}, assume its true transcript as {ST
1 , ST

2 , · · · , ST
N}. The

relative separation margin forXi is defined as:

d1(Xi) = min
Sj∈Ω Sj �=ST

i

"
F (Xi|λST

i
) − F (Xi|λSj

)

F (Xi|λST
i

)

#

= min
Sj∈Ω Sj �=ST

i

"
1 −

F (Xi|λSj
)

F (Xi|λST
i

)

#
(2)

where Ω denotes the set of all possible strings. As in continuous
speech recognition, there is enormous or even infinite number of pos-

sible strings, which makes it impossible to enumerate all of them. In

[8] we proposed to use N-best strings from Viterbi decoding, which

represent the most confusable strings with the true string, to approx-
imate the admissible set Ω for each training utterance. As Ω now
becomes different for each training utterance, we denote it as Ωi for

Xi.

As observed in most ASR systems, the values of discriminative
functions, F (·), determined by the likelihood (NOT log-likelihood)
values of HMMs and language models in eq.(1), are within the range

of [0, 1]. For any training utterance, Xi, which is correctly rec-

ognized by the current models based on the rule in eq.(1), 1 >
F (Xi|λST

i
) > F (Xi|λSj

) > 0 holds for any Sj ∈ Ω and Sj �=

ST
i . As a result, we have 0 <

»
1 −

F (Xi|λSj
)

F (Xi|λST
i

)

–
< 1. Therefore

d1(Xi) is bounded between [0, 1] for any correctly recognized train-
ing utterances.

In practice, usually log-likelihood functions rather than the orig-

inal likelihood functions are used in most HMM-based ASR sys-

tems. Let’s denote discriminant function in the logarithm scale as
F(Xi) for each F (Xi), i.e., F(Xi) = log F (Xi). Based on log-
arithm discriminant functions, we define the relative margin for any

training utterance, Xi, as follows:

d2(Xi) = min
Sj∈Ωi Sj �=ST

i

"
F(Xi|λSj

) −F(Xi|λST
i

)

F(Xi|λSj
)

#

= min
Sj∈Ωi Sj �=ST

i

"
1 −

F(Xi|λST
i

)

F(Xi|λSj
)

#
(3)

As discussed above, F (·) < 1, so F(·) < 0. So for any cor-
rectly recognized utterance Xi, F(Xi|λSj

) < F(Xi|λST
i

) < 0 for

any Sj ∈ Ωi and Sj �= ST
i . As a result, 0 <

»
1 −

F(Xi|λST
i

)

F(Xi|λSj
)

–
< 1

Therefore the relative margin d2(Xi) is also bounded between [0, 1]
for any correctly recognized training utteranceXi.

Analogous to support vector machine, we define a subset of

training utterances fromD for model estimation, denoted as the sup-
port token set, SV .

SV = {Xi | Xi ∈ D and 0 ≤ d2(Xi) ≤ γ} (4)

where γ > 0 is a pre-set positive number. EachXi in SV is called a
support token.

To achieve better generalization power, it is desirable to adjust
decision boundaries, which are implicitly determined by all models,

through optimizing all HMM parameters to make all support tokens

in SV as far from the decision boundaries as possible, which will
result in a robust classifier with better generalization capability. This
idea leads to estimating HMMmodels based on the criterion of max-

imizing the minimum relative margin, either d1(Xi) or d2(Xi), of
all support tokens in SV . This estimation method is called maxi-
mum relative margin estimation (MRME). It can be formulated as a
minimax optimization problem:

Λ̃ = arg max
Λ

min
Xi∈SV

d2(Xi)

= arg min
Λ

max
Xi∈SV, Sj∈Ωi,Sj �=ST

i

hF(Xi|λST
i

)

F(Xi|λSj
)
− 1

i
(5)

where Λ denotes the parameter set of all CDHMMs in the classifier.
To solve the minimax optimization problem, a gradient descent

method is used. First, we define a differentiable objective function,

Q1(Λ), to approximate the maximization in eq.(5) as follows.

max
Xi∈SV, Sj∈Ωi, Sj �=ST

i

hF(Xi|λST
i

)

F(Xi|λSj
)
− 1

i

≈ log

( X
Xi∈SV, Sj∈Ωi, Sj �=ST

i

exp
h
η · e2(Xi, λSj

, λST
i

)
i)1/η

= Q1(Λ) (6)

where η > 1 and

e2(Xi, λSj
, λST

i
) =

F(Xi|λST
i

)

F(Xi|λSj
)
− 1.

As η → ∞, Q1(Λ) will approach the maximization in eq.(5).
Next, a gradient descent method is used to minimize Q1(Λ) to

solve eq.(5) in an approximate way.

3. NEW TRAINING CRITERION BASED ON
COMBINATION OF MRME AND MCE

As we can see in eq.(4), the MRME algorithm uses only support to-

kens for training, which are correctly recognized utterances. It relies

on a prior MCE step to handle those negative (or mis-recognized) to-

kens. Thus, the original MRME algorithm usually uses MCE mod-
els to bootstrap the training. In other word, a separate step of MCE
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training is performed first to reduce the total number of negative to-

kens as much as possible and then the generated model is used as

the seed model for the MRME training. In this way, the overall time
for training an MRME model is longer than training an MCE model.

On the other hand, separation of MRME and MCE training may not

be optimal in model estimation.

In this paper, we propose an alternative way to handle recogni-
tion errors in the training data. Instead of requiring a seperate MCE

training before MRME training, we combine the objetive function

for MCE and the objective function for MRME, and minimize the

new combined objective function. In that way, both positive to-
kens and negative tokens are taken care at the same time, that is,

the relative margins for positive tokens are maximized and the num-

ber of recognition errors is minimized. This idea is similar to the

combined objective function of support vector machine (SVM) in
non-separable cases, where some slack variables are introduced to

represent classification errors.

Based on the the current model set Λ, we first identify all mis-
recognized utterannces, which have negative margins (or equiva-
lently, negative relative margins), as the error set E . Let’s define
the margin d(Xi) as

d(Xi) = min
Sj∈Ωi Sj �=ST

i

h
F(Xi|λST

i
) −F(Xi|λSj

)
i

so the error set is given as follows.

E = {Xi | Xi ∈ D and d(Xi) ≤ 0} (7)

For utterances in E , following the MCE training, we optimize HMM
model parameters, Λ, to minimize the total number of utterances in
E . In practice, the total count of utterances in E must be smoothed
by plugging the margin into the following sigmoid function:

l(d(Xi)) =
1

1 + exp[γd(Xi)]
(8)

where γ > 1 is a constant to control the slope of the sigmid function.
As in the MCE formulation, the max in the definition of margin need
to be approximated by summation of exponential functions. Finally,

the smoothed count of total mis-recognized utterances in E can be
expressed as:

Q2(Λ) =
X

Xi∈E

l(d(Xi)) =
X

Xi∈E

1

1 + exp[γd(Xi)]
(9)

Given a training set D, we can estimate the whole CDHMM set,

Λ, to minimize the following new objective function,Q(Λ), which is
a weighted linear combination of the objective function for MRME,

Q1(Λ) in eq.(6) and Q2(Λ). Thus,

Q(Λ) = α Q1(Λ) + β Q2(Λ) (10)

where α ≥ 0, β ≥ 0 are parameters to make a good balance between
Q1(Λ) and Q2(Λ). The optimal value for α and β can be selected

experimentally. The new training criterion is given as

Λ̃ = arg min
Λ

Q(Λ) (11)

Similar to MRME, this minimization problem can be solved by any

gradient descent algorithm, such as the generalized probabilistic de-
scent (GPD) algorithm. This new training criterion can be regarded

as a generalized MRME criterion. When β = 0, it is equivalent
to the original MRME criterion. When α = 0, it becomes a vari-
ant MCE criterion, which use only misrecognized training data as
opposed to using all training data in the normal MCE.

4. MRMEWITH NEGATIVE TOKENS

As discussed in section 3, the MRME algorithm uses only correctly

recognized utterances to estimate the models. This constraint greatly

limits the potential of MRME algorithm as when the tasks become

large, the string error rate (even after MCE training) will be so high
that only a very small percentage or even none of the training utter-

ances can be used for MRME training.

The MRME algorithm was originally motivated by large mar-

gin classifiers in machine learning such as support vector machine

(SVM). Therefore the definition of support token set in MRME takes
similar form as that in SVM. By closely looking at MRME criterion,

we find that we can include the negative tokens in the support to-

ken set as well (maybe it should not be called support token set any

more). Considering the relative margin d2(Xi) defined in eq.(3), for
any (including misrecognized) utterance Xi, F(Xi|λST

i
) < 0 and

F(Xi|λSj
) < 0, so

»
1 −

F(Xi|λST
i

)

F(Xi|λSj
)

–
< 1 always holds. There-

fore the relative margin d2(Xi) has an upper bound of 1 for any
training utteranceXi, regardless correctly or incorrectly recognized.

This at least guarantees that the minimax optimization in eq.(5) is

still solvable when we include all negative tokens.

Let’s define a new support token set as

SV = {Xi | Xi ∈ D and d2(Xi) ≤ γ} (12)

where γ > 0 is a pre-set positive number. Obviously, the new sup-
port token set includes all mis-recognized utterances as well as all

original support tokens given in eq.(4). The training criterion is the

same as eq.(5). Given the new definition of support token set, the

minimization in the criterion eq.(5) will choose the most negative
token, which is the farthest from the decision boundary and locates

in the wrong decision region. This is very different from the origi-

nal MRME training where the minimization will always choose the

token that is the nearest to the decision boundary but locates in the
correct decision region. According to the criterion, the maximiza-

tion will push the negative tokens to cross the decision boundaries

(so they will have positive margins), similar to the way that MCE

does. In this way, MRME no longer needs to bootstrap from MCE-
trained model.

The new algorithm has a few potential advantanges over the

orginal MRME. First, it can take full benefit of MRME because more

training utterances participate in the training and therefore may be

able to achieve better model. Especially in large vocabulary con-
tinuous speech recognition (LVCSR) tasks, where only a very small

percentage of the training utterances is correctly recognized by the

baseline models (MLE- or MCE- trained models), the benefit of the

original MRME will be greatly limited due to lack of applicable
training utterances. But the new algorithm has no such problem and

can be directly applied to LVCSR tasks. Second, unlike the origi-

nal MRME, the new algorithm does not need to use MCE models to

bootstrap the training. As MRME itself is faster than MCE, training

an MRME model takes even less time than training an MCE model.
This is very important especially for LVCSR tasks where hundreds

of hours training data may be used.

On the other hand, a drawback of this new algorithm is that the

training may be vulnerable to outliers in training data.

5. EXPERIMENTAL RESULTS

The new approaches have been evaluated in the TIDIGITS corpus.
The experimental setup is the same as in [8]. The database in our
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experiments contains utterances from 225 speakers (112 for train-

ing, 113 for testing). The vocabulary has only digits (’1’ to ’9’,

plus ’oh’ and ’zero’). The lengths of the digit strings are from 1 to
7. The training set has 8623 digit strings and the test set has 8700

strings. Our model set has 11 whole-word CDHMMs representing

all digits. Each HMM has 12 states and use a simple left-to-right

topology without state-skip. The data sampling rate is 16KHz. Stan-
dard MFCC feature is used (39 dimensions including 12 MFCC’s

and normalized energy, plus their first and second order time deriva-

tives). The size of N-Best list is five (N=5). As opposed to the MCE

training, only Gaussian means are updated during all MRME train-
ings.

Table 1 gives a performance comparison of the best results ob-

tained by different training criteria on TIDIGITS test set. mrme1 is
the original MRME algorithm that uses only positive tokens in the

support token set and bootstraps from MLE model. mrme2 uses the
same algorithm but bootstraps from MCE model. For references,

results for best MLE models (mle) and MCE models (mce) are also
listed. cmb is the new algorithm that combines MCE and MRME as
discussed in section 3. nsv is the new algorithm that includes nega-
tive tokens in the support token set as discussed in section 4. Both
cmb and nsv bootstrap from MLE model.

Table 1. Results (sentence accuracy in %) of different training crite-
ria on TIDIGIT test data. The first row lists the number of Gaussions

per HMM state.

mix/state 1m 2m 4m 8m 16m 32m

mle 85.10 93.66 95.74 97.63 97.84 98.34

mce 92.24 95.29 97.24 98.30 98.64 98.89

mrme1 95.10 97.90 98.55 98.90 99.03 99.16

mrme2 95.21 97.97 98.59 98.90 99.03 99.16

cmb 96.10 98.10 98.82 99.00 99.03 99.16

nsv 96.16 98.25 98.89 99.10 99.13 99.24

We can see that bootstrapping from MLE model (mrme1) as op-
posed to from MCE model (mrme2) affects MRME’s performance
only when the model is simple. When more complicated models
(8 or more mixtures) are used, the recognition rates become the

same. This is mainly because the accuracy difference between the

MLE model and MCE model is so small when complicated mod-

els are used, so the support token sets in both cases are very sim-
ilar. cmb achieves higher accuracy than the original MRME algo-
rithm (mrme1 or mrme2) when the model is simple and therefore
there are more mis-recognized utterances in the training set. This

confirms our hypothesis that joint optimization of MRME and MCE

may work better than a separate MCE followed by an MRME. But
when complexity of the models and therefore recognition accuracy

increase, the improvement becomes smaller or even disappear. One

reason is that when the number of recognition errors in the training

set becomes smaller, cmb converges to MRME (when there is no
mis-recognized utterance in the training set, cmb is equivalent to the
original MRME).

The new MRME algorithm (nsv) that includes negative tokens
in support token set achieves small but consistent improvement over

the original MRME algorithm. The best result achieved by nsv is
0.76% string error rate, which is 10% relative lower than the best

result (0.84%) for the original MRME algorithm. This is, to our

knowledge, the best result that has ever been reported on this task.

When the tasks become more difficult, for example, in WSJ 20K
task, a very good MLE model can only achieve 40% sentence accu-

racy although the word accuracy is as high as 90%. Even after MCE

training, the error rate will be still very high. In this case, the ben-

efit of the original MRME algorithm will be greatly limited and the
advantages of the new MRME algorithms may become much larger.

Although we use word as the basic modeling unit here, it is

straightforward to extend to sub-word model unit (e.g. phone), where

the string model will become a concatenation of phone models as
opposed to word models used in this experiment. So far, our pre-

liminary results on a WSJ 5K task using a simple state-clustered

within-word triphone model and the new MRME algorithm (nsv)
cut the word error rate of MLE model from 19.4% to 16.6%.

6. SUMMARY

Two new approaches to improve MRME are proposed and discussed.

One is a new training criterion based on a combination of MRME

and MCE objective function. The other is to include negative tokens
into the support token set, so that MRME algorithm can be applied

to all training data as opposed to only correctly recognized data in

the original MRME approach. Both proposed new approaches can

bootstrap directly from MLE models. Improvement on recognition
rate has been achieved on TIDIGITS database. More research and

experiments on sub-word (phone) based systems for large vocabu-

lary continuous speech tasks (e.g. Wall Street Journal tasks) are in

progress.
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